Skip to main content
Log in

Structural characterization and transistor properties of thickness-controllable MoS2 thin films

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We report an optimized multi-step chemical vapor deposition process for growing MoS2 thin films. This process enables large-area processing, film patterning simply by using shadow masks, and precise control of the final thickness by changing the initial thickness of the first step of MoO3 film deposition. The structural characterization of the MoS2 films is performed with transmission electron microscopy and X-ray diffraction as a function of film thickness. MoS2 film with a thickness of 3 nm possesses a highly crystalline structure with a spacing of 0.62 nm. The crystallinity and orientation of the films are degraded with increased film thickness. Careful analysis by time-of-flight secondary ion mass spectroscopy reveals that a film with a thickness of 9 nm is not completely sulfurized, and unreacted MoO3 is left at the bottom of the film. These fundamental analyses coincide with the thickness dependence of thin-film transistor (TFT) performance. A TFT with the optimal film thickness of 3 nm achieves high performance, namely a carrier mobility of 0.57 cm2 V−1 s−1 and an on/off ratio of ~ 102.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Meng X, Yang D, Fang Y, Ye H, Su W (2018) Observation of high-frequency raman modes in FeCl3- and Zn-intercalated MoS2 flakes. J Nanosci Nanotechnol 18:5049–5053

    Article  Google Scholar 

  2. Qi R, Hu Y, Li W, Wang Y, Li J, Zhang G, Shang Y, Yang Z (2017) Effects of intercalating polysilanes into MoS2 interlaminar spaces on transport property. Nanosci Nanotechnol Lett 9:1287–1297

    Article  Google Scholar 

  3. Kaur M, Umar A, Kumar MS, Singh S, Kansal SK (2017) Visible-light photocatalytic degradation of organic pollutants using molybdenum disulfide (MoS2) microtubes. Nanosci Nanotechnol Lett 9:1966–1974

    Article  Google Scholar 

  4. Feng Y, Ding L, Ji D, Wang L, Guo W (2018) Highly rectified ion transport through 2D WSe2/MoS2 bi-layered membranes. Chin Chem Lett 29(6):892–894

    Article  Google Scholar 

  5. Guo ZY, Zhong Y, Liu Y, Mao CM, Li GC (2017) MoS2 nanosheet arrays supported on hierarchical porous carbon with enhanced lithium storage properties. Chin Chem Lett 28(4):743–747

    Article  Google Scholar 

  6. Han C, Tian Z, Dou H, Wang X, Yang X (2018) Vertical crosslinking MoS2/three-dimensional graphene composite towards high performance supercapacitor. Chin Chem Lett 29(4):606–611

    Article  Google Scholar 

  7. Voiry D, Salehi M, Silva R, Fujita T, Chen M, Asefa T, Shenoy VB, Eda G, Chhowalla M (2013) Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett 13:6222–6227

    Article  Google Scholar 

  8. Cho B, Hahm MG, Choi M, Yoon J, Kim AR, Lee Y-J, Park S-G, Kwon J-D, Kim CS, Song M, Jeong Y, Nam K-S, Lee S, Yoo TJ, Kang CG, Lee BH, Ko HC, Ajayan PM, Kim D-H (2015) Charge-transfer-based gas sensing using atomic-layer MoS2. Sci Rep 5:8052-1-6

    Google Scholar 

  9. Wu W, Wang L, Li Y, Zhang F, Lin L, Niu S, Chenet D, Zhang X, Hao Y, Heinz TF, Hone J, Wang ZL (2014) Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 514:470–474

    Article  Google Scholar 

  10. Chang K, Chen W (2011) L-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 5:4720–4728

    Article  Google Scholar 

  11. Chen J, Kuriyama N, Yuan H, Tsutsui H, Takeshita TIA, Sakai T (2001) Electrochemical hydrogen storage in MoS2 nanotubes. J Am Chem Soc 123:11813–11814

    Article  Google Scholar 

  12. Huo N, Kang J, Wei Z, Li SS, Li J, Wei SH (2014) Novel and enhanced optoelectronic performances of multilayer MoS2–WS2 heterostructure transistors. Adv Funct Mater 24:7025–7031

    Article  Google Scholar 

  13. Sanchez OL, Lembke D, Kayci M, Radenovic A, Kis A (2013) Ultrasensitive photodetectors based on monolayer MoS2. Nat Nanotechnol 8:497–501

    Article  Google Scholar 

  14. Li H, Wu J, Yin Z, Zhang H (2014) Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 Nanosheets. Acc Chem Res 47:1067–1075

    Article  Google Scholar 

  15. Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M (2011) Photoluminescence from chemically exfoliated MoS2. Nano Lett 11:5111–5116

    Article  Google Scholar 

  16. Samad L, Bladow SM, Ding Q, Zhuo J, Jacobberger RM, Arnold MS, Jin S (2016) Layer-controlled chemical vapor deposition growth of MoS2 vertical heterostructures via van der Waals epitaxy. ACS Nano 10:7039–7046

    Article  Google Scholar 

  17. Zhang W, Huang JK, Chen CH, Chang YH, Cheng YJ, Li LJ (2013) High gain phototransistors based on a CVD MoS2 monolayer. Adv Mater 25:3456–3461

    Article  Google Scholar 

  18. Liu K-K, Zhang W, Lee Y-H, Lin Y-C, Chang M-T, Su C-Y, Chang C-S, Li H, Shi Y, Zhang H, Lai C-S, Li L-J (2012) Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett 1:1538–1544

    Article  Google Scholar 

  19. Zhan YJ, Liu Z, Najmaei S, Ajayan PM, Lou J (2012) Large area vapor phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 8:966–971

    Article  Google Scholar 

  20. Huang Z, Zhang L, Li M, Ran W, Lu Y, Yang B, Long Z (2017) Hollow tubular morphology of MoS2 via the solvothermal method with a single source precursor. Nanosci Nanotechnol Lett 9:56–60

    Article  Google Scholar 

  21. Zhang C, Li X, Lian C, Hu C, Duo S, Hu Q (2018) Few-layered MoS2 synthesized by hydrothermal method with improved adsorption capacity for methylene blue than active carbon. J Nanosci Nanotechnol 18:7948–7951

    Article  Google Scholar 

  22. Lee YH, Zhang XQ, Zhang WJ, Chang MT, Lin CT, Chang KD, Yu YC, Wang JTW, Chang CS, Li LJ, Lin TW (2012) Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv Mater 24:2320–2325

    Article  Google Scholar 

  23. Najmaei S, Liu Z, Zhou W, Zou XL, Shi G, Lei SD, Yakobson BI, Idrobo JC, Ajayan PM, Lou J (2013) Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat Mater 12:754–759

    Article  Google Scholar 

  24. Wang XS, Feng HB, Wu YM, Jiao LY (2013) Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition. J Am Chem Soc 135:5304–5307

    Article  Google Scholar 

  25. Lin YC, Zhang WJ, Huang JK, Liu KK, Lee YH, Liang CT, Chu CW, Li LJ (2012) Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. Nanoscale 4:6637–6641

    Article  Google Scholar 

  26. Lee YH, Yu LL, Wang H, Fang WJ, Ling X, Shi YM, Lin CT, Huang JK, Chang MT, Chang CS, Dresselhaus M, Palacios T, Li LJ, Kong J (2013) Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces. Nano Lett 13:1852–1857

    Article  Google Scholar 

  27. Ji QQ, Zhang YF, Gao T, Zhang Y, Ma DL, Liu MX, Chen YB, Qiao XF, Tan PH, Kan M, Feng J, Sun Q, Liu ZF (2013) Epitaxial monolayer MoS2 on mica with novel photoluminescence. Nano Lett 13:3870–3877

    Article  Google Scholar 

  28. Ling X, Lee YH, Lin YX, Fang WJ, Yu LL, Dresselhaus MS, Kong J (2014) Role of the seeding promoter in MoS2 growth by chemical vapor deposition. Nano Lett 14:464–472

    Article  Google Scholar 

  29. Jeon J, Lee J, Yoo G, Park JH, Yeom GY, Jang YH, Lee S (2016) Size-tunable synthesis of monolayer MoS2 nanoparticles and their applications in non-volatile memory devices. Nanoscale 8:16995–17003

    Article  Google Scholar 

  30. Schmidt H, Wang S, Chu L, Toh M, Kumar R, Zhao W, Neto AHC, Martin J, Adam S, Özyilmaz B, Eda G (2014) Transport properties of monolayer MoS2 grown by chemical vapor deposition. Nano Lett 14:1909–1913

    Article  Google Scholar 

  31. Feng Q, Zhu Y, Hong J, Zhang M, Duan W, Mao N, Wu J, Xu H, Dong F, Lin F, Jin C, Wang C, Zhang J, Xie L (2014) Growth of large-area 2D MoS2(1-x)Se2x semiconductor alloys. Adv Mater 26:2648–2653

    Article  Google Scholar 

  32. Yu Z, Pan Y, Shen Y, Wang Z, Ong Z-Y, Xu T, Xin R, Pan L, Wang B, Sun L, Wang J, Zhang G, Zhang YW, Shi Y, Wang X (2014) Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering. Nat Commun 5:5290-1-7

    Google Scholar 

  33. Radisavljevic B, Kis A (2013) Mobility engineering and a metal-insulator transition in monolayer MoS2. Nat Mater 12:815–820

    Article  Google Scholar 

  34. Qiu H, Pan L, Yao Z, Li J, Shi Y, Wang X (2012) Electrical characterization of back-gated bi-layer MoS2 field-effect transistors and the effect of ambient on their performances. Appl Phys Lett 100:123104-1

    Google Scholar 

  35. Wang H, Yu L, Lee Y-H, Shi Y, Hsu A, Chin ML, Li L-J, Dubey M, Kong J, Palacios T (2012) Integrated circuits based on bilayer MoS2 transistors. Nano Lett 12:4674–4680

    Article  Google Scholar 

  36. Fuhrer MS, Hone J (2013) Measurement of mobility in dual-gated MoS2 transistors. Nat Nanotech 8:146–147

    Article  Google Scholar 

  37. Kaasbjerg K, Thygesen KS, Jacobsen KW (2012) Phonon-limited mobility in n-type single-layer MoS2 from first principles. Phys Rev B 85:115317-1

    Google Scholar 

  38. Jiang C, Rumyantsev S, Samnakay R, Shur M, Balandin A (2015) High-temperature performance of MoS2 thin-film transistors: direct current and pulse current-voltage characteristics. J Appl Phys 117:064301-1-6

    Google Scholar 

  39. Yue Q, Shao Z, Chang S, Li J (2013) Adsorption of gas molecules on monolayer MoS2 and effect of applied electric field. Nanoscale Res Lett 8:425-1-7

    Article  Google Scholar 

  40. Walter TN, Kwok F, Simchi H, Aldosari HM, Mohney SE (2017) Oxidation and oxidative vapor-phase etching of few-layer MoS2. J Vac Sci Technol, B 35:021203

    Article  Google Scholar 

  41. Heo S, Ishiguro Y, Hayakawa R, Chikyow T, Wakayama Y (2016) Perspective: highly ordered MoS2 thin films grown by multi-step chemical vapor deposition process. APL Mater 4:030901-1-7

    Article  Google Scholar 

  42. Heo S, Hayakawa R, Wakayama Y (2017) Carrier transport properties of MoS2 field-effect transistors produced by multi-step chemical vapor deposition method. J Appl Phys 121:024301-1-6

    Article  Google Scholar 

  43. Yoon Y, Ganapathi K, Salahuddin S (2011) How good can monolayer MoS2 transistors be? Nano Lett 11:3768–3773

    Article  Google Scholar 

  44. Amin R, Hossain MdA, Zakaria Y (2018) Interfacial kinetics and ionic diffusivity of the electrodeposited MoS2 film. Appl Mater Interfaces 10:13509–13518

    Article  Google Scholar 

  45. Gatensby R, McEvoy N, Lee K, Hallam T, Berner NC, Rezvani E, Winters S, Georg MO, Duesberg S (2014) Controlled synthesis of transition metal dichalcogenide thin films for electronic applications. Appl Surf Sci 297:139–146

    Article  Google Scholar 

  46. Wang XS, Feng HB, Wu YM, Jiao LY (2013) Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition. J Am Chem Soc 135:5304–5307

    Article  Google Scholar 

  47. Lince JR, Hilton MR, Bommannavar AS (1990) Oxygen substitution in sputter-deposited MoS2 films studied by extended X-ray absorption fine structure. X-ray photoelectron spectroscopy and X-ray diffraction, Surf Coat Technol 44:640–651

    Google Scholar 

  48. Li XL, Li YD (2003) Formation of MoS2 inorganic fullerenes (IFs) by the reaction of MoO3 nanobelts and S. Chem Eur J 9:2726–2731

    Article  Google Scholar 

  49. Park J, Choudhary N, Smith J, Lee G, Kim M, Choi W (2015) Thickness modulated MoS2 grown by chemical vapor deposition for transparent and flexible electronic devices. Appl Phys Lett 106:012104-1-5

    Google Scholar 

  50. Greve DW (1998) Field Effect Devices and Applications: Devices for Portable, Low-Power, and Imaging Systems, 1st edn. Prentice Hall, New Jersey, p 87

    Google Scholar 

  51. Shah PB, Amani M, Chin ML, O’Regan TP, Crowne FJ, Dubey M (2014) Analysis of temperature dependent hysteresis in MoS2 field effect transistors for high frequency applications. Solid State Electron 91:87–90

    Article  Google Scholar 

  52. Zhou W, Zou X, Najmaei S, Liu Z, Shi Y, Kong J, Lou J, Ajayan PM, Yakobson BI, Idrobo J-C (2013) Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett 13:2615–2622

    Article  Google Scholar 

  53. Ghatak S, Pal AN, Ghosh A (2011) Nature of electronic states in atomically thin MoS2 field-effect transistors. ACS Nano 5:7707–7712

    Article  Google Scholar 

  54. Qiu H, Xu T, Wang Z, Ren W, Nan H, Ni Z, Chen Q, Yuan S, Miao F, Song F, Long G, Shi Y, Sun L, Wang J, Wang X (2013) Hopping transport through defect-induced localized states in molybdenum disulphide. Nat Commun 4:2642-1-6

    Google Scholar 

  55. Late DJ, Liu B, Matte HSSR, Dravid VP, Rao CNR (2012) Hysteresis in single-layer MoS2 field effect transistors. ACS Nano 6:5635–5641

    Article  Google Scholar 

  56. Na J, Joo M-K, Shin M, Huh J, Kim J-S, Piao M, Jin J-E, Jang H-K, Choi HJ, Shim JH, Kim G-T (2014) Low-frequency noise in multilayer MoS2 field-effect transistors: the effect of high-k passivation. Nanoscale 6:433–441

    Article  Google Scholar 

  57. Park W, Park J, Jang J, Lee H, Jeong H, Cho K, Hong S, Lee T (2013) Oxygen environmental and passivation effects on molybdenum disulfide field effect transistors. Nanotechnology 24:095202-1-5

    Google Scholar 

  58. Perera MM, Lin M-W, Chuang H-J, Chamlagain BP, Wang C, Tan X, Cheng MM-C, Tománek Dband Zhou Z (2013) Improved carrier mobility in few-layer MoS2 field-effect transistors with ionic-liquid gating. ACS Nano 7:4449–4458

    Article  Google Scholar 

  59. Zhu W, Low T, Lee Y-H, Wang H, Farmer DB, Kong J, Xia F, Avouris P (2014) Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition. Nat Commun 5:3087-1-8

    Google Scholar 

Download references

Acknowledgements

This work was supported by the World Premier International Center (WPI) for Materials Nanoarchitectonics (MANA) of the National Institute for Materials Science (NIMS), Tsukuba, Japan. This research was also supported by the R&D Center for Green Patrol Technologies through R&D for Global Top Environmental Technologies (RE201806011) funded by the Ministry of Environment, Republic of Korea (MOE).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yesul Jeong or Yutaka Wakayama.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, Y., Sung, J.Y., Choi, Y. et al. Structural characterization and transistor properties of thickness-controllable MoS2 thin films. J Mater Sci 54, 7758–7767 (2019). https://doi.org/10.1007/s10853-019-03435-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03435-6

Navigation