Skip to main content

Advertisement

Log in

Deformation patterns and fracture stress of beta-phase gallium oxide single crystal obtained using compression of micro-pillars

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The deformation of single-crystal beta-phase gallium oxide (or β-Ga2O3) micro-pillars under compression was investigated with the aid of transmission electron microscopy. High-density stacking faults were the dominant deformation defects in the plastically deformed micro-pillars. Micro-cracks were found along (200), (001) and (010) lattice planes and fracture occurred along (200) lattice plane when compressive strain was sufficiently great. Lattice bending was also observed in the fractured pillar. The average fracture stress and strain of β-Ga2O3 being measured are 7.25 ± 1.11 GPa and 3.80 ± 0.57%, respectively, which have never been reported previously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Tippins HH (1965) Optical absorption and photoconductivity in the Band Edge of β-Ga2O3. Phys Rev 140:A316–A319

    Article  Google Scholar 

  2. Pearton SJ, Yang J, Cary PH IV, Ren F, Kim J, Tadjer MJ, Mastro MA (2018) A review of Ga2O3 materials, processing, and devices. Appl Phys Rev 5:011301

    Article  Google Scholar 

  3. Stepanov SI, Nikolaev VI, Bougrov VE, Romanov AE (2016) Gallium oxide: properties and applications—a review. Rev Adv Mater Sci 44:63–86

    CAS  Google Scholar 

  4. Muhammed MM, Peres M, Yamashita Y, Morishima Y, Sato S, Franco N, Lorenz K, Kuramata A, Roqan IS (2014) High optical and structural quality of GaN epilayers grown on \( \left( {\bar{2}01} \right) \) β-Ga2O3. Appl Phys Lett 105:042112

    Article  Google Scholar 

  5. Higashiwaki M, Sasaki K, Kuramata A, Masui T, Yamakoshi S (2012) Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates. Appl Phys Lett 100:013504

    Article  Google Scholar 

  6. Mastro MA, Kuramata A, Calkins J, Kim J, Ren F, Peartong SJ (2017) Opportunities and future directions for Ga2O3. Ecs J Solid State Sci Technol 6:P356–P359

    Article  CAS  Google Scholar 

  7. Bartic M, Baban CI, Suzuki H, Ogita M, Isai M (2007) β-Gallium oxide as oxygen gas sensors at a high temperature. J Am Ceram Soc 9:2879–2884

    Article  Google Scholar 

  8. Gallium oxide trumps traditional wide bandgap semiconductors. www.compoundsemiconductornet. Accessed 2 Oct 2018

  9. Dai ZR, Pan ZW, Wang ZL (2002) Gallium oxide nanoribbons and nanosheets. J Phys Chem B 106:902–904

    Article  CAS  Google Scholar 

  10. Zheng X, Lee J, Rafique S, Han L, Zorman CA, Zhao H, Feng PXL (2017) Ultrawide band gap β-Ga2O3 nanomechanical resonators with spatially visualized multimode motion. ACS Appl Mater Inter 9:43090–43097

    Article  CAS  Google Scholar 

  11. Geller S (1960) Crystal structure of β-Ga2O3. J Chem Phys 33:676–684

    Article  CAS  Google Scholar 

  12. Galazka Z, Uecker R, Irmscher K, Albrecht M, Klimm D, Pietsch M, Brützam M, Bertram R, Ganschow S, Fornari R (2010) Czochralski growth and characterization of β-Ga2O3 single crystals. Cryst Res Technol 45(12):1229–1236

    Article  CAS  Google Scholar 

  13. Nikolaev VI, Maslov V, Stepanov SI, Pechnikov AI, Krymov V, Nikitina IP, Guzilova LI, Bougrov VE, Romanov AE (2017) Growth and characterization of β-Ga2O3 crystals. J Cryst Growth 457:132–136

    Article  CAS  Google Scholar 

  14. Villora EG, Shimamura K, Yoshikawa Y, Aoki K, Ichinose N (2004) Large-size beta-Ga2O3 single crystals and wafers. J Cryst Growth 270:420–426

    Article  CAS  Google Scholar 

  15. Kuramata A, Koshi K, Watanabe S, Yamaoka Y, Masui T, Yamakoshi S (2016) High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth. Jpn J Appl Phys 55:1202A2

    Article  Google Scholar 

  16. Higashiwaki M, Jessen GH (2018) Guest Editorial: the dawn of gallium oxide microelectronics. Appl Phys Lett 112:060401

    Article  Google Scholar 

  17. Pei ZJ, Fisher GR, Liu J (2008) Grinding of silicon wafers: a review from historical perspectives. Int J Mach Tool Manuf 48:1297–1307

    Article  Google Scholar 

  18. Gao S, Wu YQ, Kang RK, Huang H (2018) Nanogrinding induced surface and deformation mechanism of single crystal β-Ga2O3. Mater Sci Semicon Proc 79:165–170

    Article  CAS  Google Scholar 

  19. Wu YQ, Gao S, Huang H (2017) The deformation pattern of single crystal β-Ga2O3 under nanoindentation. Mater Sci Semicon Proc 71:321–325

    Article  CAS  Google Scholar 

  20. Lawn B (1993) Fracture of brittle solids. Cambridge Press, Cambridge

    Book  Google Scholar 

  21. Jiang L, Chawla N (2010) Mechanical properties of Cu6Sn5 intermetallic by micropillar compression testing. Scr Mater 63:480–483

    Article  CAS  Google Scholar 

  22. Fei HY, Abraham A, Chawla N, Jiang HQ (2012) Evaluation of micro-pillar compression tests for accurate determination of elastic-plastic constitutive relations. J Appl Mech 79:061011

    Article  Google Scholar 

  23. Langford RM, Petford-Long AK (2001) Preparation of transmission electron microscopy cross-section specimens using focused ion beam milling. J Vac Sci Technol, A 19:2186–2193

    Article  CAS  Google Scholar 

  24. An Q, Li GD (2017) Shear-induced mechanical failure of β-Ga2O3 from quantum mechanics simulations. Phys Rev B 96:144113

    Article  Google Scholar 

  25. Gao HJ, Huang YG (2003) Geometrically necessary dislocation and size-dependent plasticity. Scr Mater 48:113–118

    Article  CAS  Google Scholar 

  26. Frick CP, Clark BG, Orso S, Schneider AS, Arzt E (2008) Size effect on strength and strain hardening of small-scale [111] nickel compression pillars. Mater Sci Eng, A 489:319–329

    Article  Google Scholar 

  27. de Jong M, Chen W, Angsten T, Jain A, Notestine R, Gamst A, Sluiter M, Ande CK, van der Zwaag S, Plata JJ, Toher C, Curtarolo S, Ceder G, Persson KA, Asta M (2015) Charting the complete elastic properties of inorganic crystalline compounds. Sci Data 2:150009

    Article  Google Scholar 

  28. Persson K (2014) Materials data on Ga2O3 (SG:12) by Materials Project mp-886

  29. Östlund F, Rzepiejewska-Malyska K, Leifer K, Hale LM, Tang Y, Ballarini R, Gerberich WW, Michler J (2009) Brittle-to-Ductile transition in uniaxial compression of silicon pillars at room temperature. Adv Funct Mater 19:2439–2444

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Australia Research Council (ARC) under Discovery Project Scheme (DP180103275). SG was funded by the Youth Program of National Natural Science Foundation of China (51505063).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. Q. Wu or H. Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y.Q., Gao, S., Kang, R.K. et al. Deformation patterns and fracture stress of beta-phase gallium oxide single crystal obtained using compression of micro-pillars. J Mater Sci 54, 1958–1966 (2019). https://doi.org/10.1007/s10853-018-2978-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2978-9

Keywords

Navigation