Skip to main content
Log in

Oxidation resistance of β-Sialon/TiN composites: an ion beam analysis (IBA) study

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The oxidation resistance of β-Sialon processed with Y2O3 sintering additive and β-Sialon/TiN composites containing 1–10 wt% TiN was studied using ion beam analysis (IBA) techniques, augmented by XRD and SEM measurements. Rutherford backscattering spectrometry was used to monitor the diffusion of Y and Ti in the oxidised samples, and the diffusion of oxygen and nitrogen was observed by particle-induced gamma emission and nuclear reaction analysis. These techniques showed that in the Sialon control sample without TiN, oxygen was the first element to migrate at 1000 °C, followed by Y and N at 1100 °C. At 1200 °C, a N-poor, Y- and O-rich oxidised layer was formed, containing crystalline Y2Si2O7. In the TiN-containing samples, Si, Al, Y and Ti were very mobile even at 1000 °C and the surface nitrogen was depleted by 1250 °C. The combined presence of yttrium aluminium garnet (YAG) and TiN protects the β-Sialon phase by forming an oxygen-rich crystalline barrier layer. The oxidation products of TiN in these composites are TiO2 and Y2Ti2O7. The details of the oxidation mechanism of the β-Sialon/TiN composites provided by these IBA studies (movement of yttrium and titanium, replacement of nitrogen by oxygen in the glassy yttrium phase and major crystalline and chemical changes in an outer oxidised layer) could not readily have been obtained by any other techniques, and illustrate the value of IBA for oxidation studies of non-oxide ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Clarke DR, Lange FF (1980) Oxidation of Si3N4 alloys: relation to phase equilibria in the system Si3N4–SiO2–MgO. J Am Ceram Soc 63(9–10):586–593

    Article  Google Scholar 

  2. Calloch P, Brown IWM, Mackenzie KJD, Hanna JV, Rees GJ (2016) Synthesis and properties of new β-Sialon/TiN composites via a novel AlxTiy intermediate. Ceram Int 42(2):2330–2338

    Article  Google Scholar 

  3. Duan RG, Roebben G, Vleugels J, Van der Biest O (2006) Optimization of microstructure and properties of in situ formed β-O-Sialon-TiN composite. Mater Sci Eng A Struct 427:195–202

    Article  Google Scholar 

  4. Acikbas NC, Tegmen S, Ozcan S, Acikbas G (2014) Thermal shock behaviour of α:β-SiAlON–TiN composites. Ceram Int 40(2):3611–3618

    Article  Google Scholar 

  5. Ayas E, Kara A, Mandal H, Turan S, Kara F (2004) Production of α-β SiAlON–TiN/TiCN composites by gas pressure sintering. Silic Indus 69(7):287–292

    Google Scholar 

  6. Nagaoka T, Yasuoka M, Hirao K, Kanzaki S (1992) Effects of TiN particle size on mechanical properties of Si3N4/TiN particulate composites. J Ceram Soc Jpn 100(1160):617–620

    Article  Google Scholar 

  7. Yin Y, Hang L, Zhang S, Bui XL (2007) Thermal oxidation properties of titanium nitride and titanium-aluminum nitride materials—a perspective for high temperature air-stable solar selective absorber applications. Thin Solid Films 515(5):2829–2832

    Article  Google Scholar 

  8. Bellosi A, Tampieri A, Liu YZ (1990) Oxidation behaviour of electroconductive Si3N4TiN composites. Mater Sci Eng A Struct 127(1):115–122

    Article  Google Scholar 

  9. Deschaux-Beaume F, Frety N, Cutard T, Colin C (2009) Oxidation modeling of a Si3N4–TiN composite: Comparison between experiment and kinetic models. Ceram Int 35(5):1709–1718

    Article  Google Scholar 

  10. Cubicciotti D, Lau KH (1979) Kinetics of oxidation of Yttria hot-pressed silicon nitride. J Electrochem Soc 126(10):1723–1728

    Article  Google Scholar 

  11. MacKenzie KJD, Shimada S, Aoki T (1997) Thermal oxidation of carbothermal β′-sialon powder: reaction sequence and kinetics. J Mater Chem 7(3):527–530

    Article  Google Scholar 

  12. Xu B, Zhu HX, Peng N, Deng CJ, Yuan WJ (2014) Study on the oxidation kinetics of in situ β-sialon bonded Al2O3-C refractories. Advanced Materials Research 881–883:1021–1025

  13. Wang XT, Xiao P, Wang B, Xu L, Lin L, Huang J, Gao DF, Zhang JS, Zhang ZT (2014) Non-isothermal method for charactering the oxidation resistance property of SiAlON materials. Adv Mater Res 1004:438–441

    Google Scholar 

  14. Shimada S, Aoki T, Kiyono H, MacKenzie KJD (1998) Early-stage thermal oxidation of carbothermal β-sialon powder. J Am Ceram Soc 81(1):266–268

    Article  Google Scholar 

  15. MacKenzie KJD, Sheppard CM, Barris GC, Mills AM, Shimada S, Kiyono H (1998) Kinetics and mechanism of thermal oxidation of sialon ceramic powders. Thermochim Acta 318(1–2):91–100

    Article  Google Scholar 

  16. Çelik A, Ayas E, Halil E, Kara A (2012) Oxidation behavior of electrically conductive α/β Sialon composites with segregated network of TiCN. J Eur Ceram Soc 32(7):1395–1403

    Article  Google Scholar 

  17. Shimada S, Aoki T, Mackenzie KJD, Okutani T, Shimokawa K (1999) Oxidation and mechanical behavior of carbothermal β-SiAlON ceramics. J Ceram Soc Jpn 107(9):786–790

    Article  Google Scholar 

  18. Vickridge IC, Brown IWM, Ekstrom TC, Trompetter WJ (1996) Ion beam analysis of sialon ceramics. Nucl Instrum Methods B 118:608–612

    Article  Google Scholar 

  19. Brown IWM, Barris GC, Sheppard CM, Trompetter WJ, Vickridge IC (2001) Use of IBA techniques for the measurement of oxidation processes in sialon ceramics. Mod Phys Lett B 15(28–29):1305–1313

    Article  Google Scholar 

  20. Davis RF, Pask JA (1972) Diffusion and reaction studies in the system Al2O3–SiO2. J Am Ceram Soc 55(10):525–531

    Article  Google Scholar 

  21. O’Meara C, Dunlop GL, Pompe R (1991) Formation, crystallisation and oxidation of selected glasses in the YSiAlON system. J Eur Ceram Soc 8(3):161–170

    Article  Google Scholar 

  22. Software AbsorbDx V1.1.4 DiffracPlus, M.o.B

  23. Liddell K, Thompson D (1986) X-ray diffraction data for yttrium silicates. Trans J Br Ceram Soc 85:17–22

    Google Scholar 

  24. Kennedy J, Markwitz A, Trodahl HJ, Ruck BJ, Durbin SM, Gao W (2007) Ion beam analysis of amorphous and nanocrystalline group III–V nitride and ZnO thin films. J Electr Mater 36(4):472–482

    Article  Google Scholar 

  25. Murmu PP, Kennedy J, Ruck BJ, Williams GVM, Markwitz A, Rubanov S, Suvorova AA (2012) Effect of annealing on the structural, electrical and magnetic properties of Gd-implanted ZnO thin films. J Mater Sci 47(3):1119–1126. https://doi.org/10.1007/s10853-011-5883-z

    Article  Google Scholar 

  26. Doolittle LR (1986) A semiautomatic algorithm for Rutherford backscattering analysis. Nucl Instrum Methods B 15(1–6):227–231

    Article  Google Scholar 

  27. Software RUMP-RBS Analysis and Simulation Package 4.00. Doolittle LR and Thompson MO with assistance from R.C. Cochran. Cornell University, NY, United States

  28. Mandal H, Thompson DP (1995) Mechanism for alpha to/from beta Sialon transformation. Proc Fourth ECerS 2(2):2–6

    Google Scholar 

  29. Software SIMNRA 6.05, Mayer, M. Max-Planck-Institut for Plasma Physics, Germany

Download references

Acknowledgements

Pauline Calloch acknowledges the financial support of a PhD Fellowship from the MacDiarmid Institute for Advanced Materials and Nanotechnology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pauline Calloch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calloch, P., Trompetter, W.J., Brown, I.W.M. et al. Oxidation resistance of β-Sialon/TiN composites: an ion beam analysis (IBA) study. J Mater Sci 53, 15348–15361 (2018). https://doi.org/10.1007/s10853-018-2711-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2711-8

Keywords

Navigation