Skip to main content
Log in

Tunable multicolor and bright white upconversion luminescence in Er3+/Tm3+/Yb3+ tri-doped SrLu2O4 phosphors

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A series of Er3+, Tm3+, Yb3+ co-doped or tri-doped SrLu2O4 phosphors were synthesized by a high-temperature solid-state reaction method. The crystal structure was characterized by X-ray diffraction technique and further validated by Rietveld refinement. The chemical composition and elemental distribution of tri-doped sample were determined by the energy-dispersive spectrometry. It is worthwhile to note that the upconversion (UC) luminescence of as-prepared samples could be precisely controlled by adjusting the Yb3+ doping concentration and the excitation pump power. A bright UC white light in Er3+/Tm3+/Yb3+ tri-doped SrLu2O4 samples was observed by controlling the intensities of red, green and blue emissions. Under various pump powers in the range of 290–810 mW, the color coordinates could be effectively tuned in a quite broad white region. Particularly, the color coordinate of optimal sample under 630 mW at 980-nm excitation is (0.3336, 0.3244), which is very close to the standard white-light illumination (0.333, 0.333) and the corresponding correlated color temperature is 5442 K. Based on the UC emission spectra and luminescence decay curves, the energy transfer (ET) mechanisms involved in the different UC processes were proposed in detail. The results imply that ET processes of Yb3+ → Er3+, Yb3+ → Tm3+ and Tm3+ → Er3+ worked simultaneously in tri-doped system and produced white UC emissions by means of two- or three-photon processes. The Er3+/Tm3+/Yb3+ tri-doped SrLu2O4 phosphor can be a potential candidate for white UC material in displays, backlights and white-light sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. Zhou B, Shi B, Jin D, Liu X (2015) Controlling upconversion nanocrystals for emerging applications. Nat Nanotechnol 10:924–936

    Article  Google Scholar 

  2. Guo H, Dong N, Yin M, Zhang W, Lou L, Xia S (2004) Visible upconversion in rare earth ion-doped Gd2O3 nanocrystals. J Phys Chem B 108:19205–19209

    Article  Google Scholar 

  3. Auzel F (2004) Upconversion and anti-stokes processes with f and d ions in Solids. Chem Rev 104:139–173

    Article  Google Scholar 

  4. Zhou J, Liu Q, Feng W, Sun Y, Li F (2015) Upconversion luminescent materials: advances and applications. Chem Rev 115:395–465

    Article  Google Scholar 

  5. Wang F, Wang J, Liu X (2010) Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles. Angew Chem Int Ed 49:7456–7460

    Article  Google Scholar 

  6. Meruga JM, Baride A, Cross W, Kellar JJ, May PS (2014) Red-green-blue printing using luminescence-upconversion inks. J Mater Chem C 2:2221–2227

    Article  Google Scholar 

  7. Hu M, Ma D, Liu C, Wang J, Zhang Z, Meng L (2016) Intense white emission from a single-upconversion nanoparticle and tunable emission colour with laser power. J Mater Chem C 4:6975–6981

    Article  Google Scholar 

  8. Wang T, Yu H, Siu CK, Qiu J, Xu X, Yu SF (2017) White-light whispering-gallery-mode lasing from lanthanide-doped upconversion NaYF4 hexagonal microrods. ACS Photonics 4:1539–1543

    Article  Google Scholar 

  9. Chen G, Qiu H, Prasad PN, Chen X (2014) Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem Rev 114:5161–5214

    Article  Google Scholar 

  10. Wang F, Liu X (2008) Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles. J Am Chem Soc 130:5642–5643

    Article  Google Scholar 

  11. Huang S, Zhu N, Lou Z, Gu L, Miao C, Yuan H, Shan A (2014) Near-infrared photocatalysts of BiVO4/CaF2:Er3+, Tm3+, Yb3+ with enhanced upconversion properties. Nanoscale 6:1362–1368

    Article  Google Scholar 

  12. Matsuura D (2002) Red, green, and blue upconversion luminescence of trivalent-rare-earth ion-doped Y2O3 nanocrystals. Appl Phys Lett 81:4526–4528

    Article  Google Scholar 

  13. Rai VK, Dey R, Kumar K (2013) White upconversion emission in Y2O3: Er3+-Tm3+-Yb3+ phosphor. Mater Res Bull 48:2232–2236

    Article  Google Scholar 

  14. Zheng K, Zhang D, Zhao D, Liu N, Shi F, Qin W (2010) Bright white upconversion emission from Yb3+, Er3+, and Tm3+-codoped Gd2O3 nanotubes. Phys Chem Chem Phys 12:7620–7625

    Article  Google Scholar 

  15. Kumari A, Soni AK, Dey R, Rai VK (2016) White light emission and optical heating in Er3+-Tm3+-Yb3+ codoped La2O3 phosphor. J Disp Technol 12:99–105

    Article  Google Scholar 

  16. Li G, Shang M, Geng D, Yang D, Peng C, Cheng Z, Lin J (2012) Multiform La2O3: Yb3+/Er3+/Tm3+ submicro-/microcrystals derived by hydrothermal process: Morphology control and tunable upconversion luminescence properties. CrystEngComm 14:2100–2111

    Article  Google Scholar 

  17. Yang J, Zhang C, Peng C, Li C, Wang L, Chai R, Lin J (2009) Controllable red, green, blue (RGB) and bright white upconversion luminescence of Lu2O3:Yb3+/Er3+/Tm3+ nanocrystals through single laser excitation at 980 nm. Chem Eur J 15:4649–4655

    Article  Google Scholar 

  18. Cao C, Qin W, Zhang J et al (2008) Up-conversion white light of Tm3+/Er3+/Yb3+ tri-doped CaF2 phosphors. Opt Commun 281:1716–1719

    Article  Google Scholar 

  19. Yang D, Dai Y, Pa Ma et al (2012) Synthesis of Li1−xNaxYF4:Yb3+/Ln3+ ((0 < x < 0.3, Ln = Er, Tm, Ho)) nanocrystals with multicolor up-conversion luminescence properties for in vitro cell imaging. J Mater Chem 22:20618–20625

    Article  Google Scholar 

  20. Dong B, Song H, Yu H et al (2008) Upconversion properties of Ln3+ doped NaYF4/polymer composite fibers prepared by electrospinning. J Phys Chem C 112:1435–1440

    Article  Google Scholar 

  21. Niu N, Yang P, Liu Y, Li C, Wang D, Gai S, He F (2011) Controllable synthesis and up-conversion properties of tetragonal BaYF5:Yb/Ln (Ln = Er, Tm, and Ho) nanocrystals. J Colloid Interface Sci 362:389–396

    Article  Google Scholar 

  22. Zhang C, Ma PA, Li C et al (2011) Controllable and white upconversion luminescence in BaYF5:Ln3+ (Ln = Yb, Er, Tm) nanocrystals. J Mater Chem 21:717–723

    Article  Google Scholar 

  23. Zheng K, Liu Y, Liu Z, Chen Z, Qin W (2013) Color control and white upconversion luminescence of LaOF:Ln3+ (Ln = Yb, Er, Tm) nanocrystals prepared by the sol-gel Pechini method. Dalton Trans 42:5159–5166

    Article  Google Scholar 

  24. Etchart I, Berard M, Laroche M et al (2011) Efficient white light emission by upconversion in Yb3+-, Er3+- and Tm3+-doped Y2BaZnO5. Chem Commun 47:6263–6265

    Article  Google Scholar 

  25. Mahalingam V, Mangiarini F, Vetrone F, Venkatramu V, Bettinelli M, Speghini A, Capobianco JA (2008) Bright white upconversion emission from Tm3+/Yb3+/Er3+-doped Lu3Ga5O12 nanocrystals. J Phys Chem C 112:17745–17749

    Article  Google Scholar 

  26. Du H, Lan Y, Xia Z, Sun J (2010) Upconversion luminescence of Yb3+/Ho3+/Er3+/Tm3+ co-doped KGd(WO4)2 powders. J Rare Earth 28:697–700

    Article  Google Scholar 

  27. Sun J, Zhu J, Liu X, Du H (2013) Bright white up-conversion emission from Er3+/Ho3+/Tm3+/Yb3+ co-doped YVO4 phosphors. Mater Res Bull 48:2175–2179

    Article  Google Scholar 

  28. Jiang Y, Shen R, Li X et al (2012) Concentration effects on the upconversion luminescence in Ho3+/Yb3+ co-doped NaGdTiO4 phosphor. Ceram Int 38:5045–5051

    Article  Google Scholar 

  29. Mahata MK, Koppe T, Mondal T et al (2015) Incorporation of Zn2+ ions into BaTiO3:Er3+/Yb3+ nanophosphor: an effective way to enhance upconversion, defect luminescence and temperature sensing. Phys Chem Chem Phys 17:20741–20753

    Article  Google Scholar 

  30. Shen X, Xing M, Tian Y, Fu Y, Peng Y, Luo X (2016) Upconversion photoluminescence properties of SrY2O4: Er3+, Yb3+ under 1550 and 980 nm excitation. J Rare Earth 35:458–463

    Article  Google Scholar 

  31. Wu H, Hao Z, Zhang L et al (2018) Er3+/Yb3+ codoped phosphor Ba3Y4O9 with intense red upconversion emission and optical temperature sensing behavior. J Mater Chem C 6:3459–3467

    Article  Google Scholar 

  32. Liu S, Ye X, Liu S, Chen M, Niu H, Hou D, You W (2017) Intense upconversion luminescence and energy-transfer mechanism of Ho3+/Yb3+ co-doped SrLu2O4 phosphor. J Am Ceram Soc 100:3530–3539

    Article  Google Scholar 

  33. Liu S, Chen M, Liu S, Niu H, Ye X, Hou D, You W (2017) Effect of Li+ doping on upconversion luminescence property of SrLu2O4: Ho3+/Yb3+ Phosphors. Acta Opt Sin 37:0616002

    Article  Google Scholar 

  34. Kim KH, Kang EH, Kang BK, Kim KP, Hong SH (2017) Synthesis of SrLu2O4: Eu2+ red phosphors and their photoluminescence properties. J Lumin 183:13–16

    Article  Google Scholar 

  35. Toby BH (2011) EXPGUI, a graphical user interface for GSAS. J Appl Cryst 34:210–213

    Article  Google Scholar 

  36. Pavitra E, Raju GSR, Oh JH, Yu JS (2014) Pump power induced tunable upconversion emissions from Er3+/Tm3+/Yb3+ ions tri-doped SrY2O4 nanocrystalline phosphors. New J Chem 38:3413–3420

    Article  Google Scholar 

  37. Ye X, Wu D, Yang M, Li Q, Huang X, Yang Y, Nie H (2014) Luminescence properties of fine-grained ScVO4: Eu3+ and Sc0.93−xLnxVO4: \( {\text{Eu}}^{{3 + }} _{{0.07}} \) (Ln = Y, La, Gd, Lu) phosphors. ECS J Solid State Sci Technol 3:R95–R99

    Article  Google Scholar 

  38. Ye X, Huang X, Hou D et al (2016) Improved luminescence properties of Sc073Y02VO4: \( {\text{Eu}}^{{3 + }} _{{0.07}} \) phosphor by codoping with Bi3+, PO4 3− and BO3 3−. Phys B 87:8–12

    Article  Google Scholar 

  39. Dai P, Zhang X, Sun P, Yang J, Wang L, Yan S, Liu Y (2012) Influence of flux on morphology and luminescence properties of phosphors: a case study on Y1.55Ti2O7:0.45Eu3+. J Am Ceram Soc 95:1447–1453

    Article  Google Scholar 

  40. Tymiński A, Grzyb T, Lis S (2016) REVO4-based nanomaterials (RE = Y, La, Gd, and Lu) as hosts for Yb3+/Ho3+, Yb3+/Er3+, and Yb3+/Tm3+ ions: structural and up-conversion luminescence studies. J Am Ceram Soc 99:3300–3308

    Article  Google Scholar 

  41. Wang F, Liu X (2009) Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem Soc Rev 38:976–989

    Article  Google Scholar 

  42. Liu S, Liu S, Zhou M, Ye X, Hou D, You W (2017) Upconversion luminescence enhancement and temperature sensing behavior of F co-doped Ba3Lu4O9:Er3+/Yb3+ phosphors. RSC Adv 7:36935–36948

    Article  Google Scholar 

  43. Zhao J, Zhang Q, Qin N, Li B, Bao D (2013) Color-tunable up-conversion emission and infrared photoluminescence and dielectric relaxation of Er3+/Yb3+ co-doped Bi2Ti2O7 pyrochlore thin films. J Am Ceram Soc 96:1214–1219

    Article  Google Scholar 

  44. Ye X, Luo Y, Liu S, Hou D, You W (2017) Intense and color-tunable upconversion luminescence of Er3+ doped and Er3+/Yb3+ co-doped Ba3Lu4O9 phosphors. J Alloys Compd 701:806–815

    Article  Google Scholar 

  45. Song F, Han L, Zou C, Su J, Zhang K, Yan L, Tian J (2006) Upconversion blue emission dependence on the pump mechanism for Tm3+-heavy-doped NaY(WO4)2 crystal. Appl Phys B 86:653–660

    Article  Google Scholar 

  46. Etchart I, Hernández I, Huignard A et al (2011) Oxide phosphors for light upconversion; Yb3+ and Tm3+ co-doped Y2BaZnO5. J Appl Phys 109:063104

    Article  Google Scholar 

  47. Patra A, Saha S, Alencar MARC, Rakov N, Maciel GS (2005) Blue upconversion emission of Tm3+–Yb3+ in ZrO2 nanocrystals: role of Yb3+ ions. Chem Phys Lett 407:477–481

    Article  Google Scholar 

  48. Li Y, Zhang J, Luo Y, Zhang X, Hao Z, Wang X (2011) Color control and white light generation of upconversion luminescence by operating dopant concentrations and pump densities in Yb3+, Er3+ and Tm3+ tri-doped Lu2O3 nanocrystals. J Mater Chem 21:2895–2900

    Article  Google Scholar 

  49. Chai G, Dong G, Qiu J, Zhang Q, Yang Z (2012) 2.7 μm emission from transparent Er3+, Tm3+ codoped yttrium aluminum garnet (Y3Al5O12) nanocrystals–tellurate glass composites by novel comelting technology. J Phys Chem C 116:19941–19950

    Article  Google Scholar 

  50. Wei W, Zhang Y, Chen R et al (2014) Cross relaxation induced pure red upconversion in activator- and sensitizer-rich Lanthanide nanoparticles. Chem Mater 26:5183–5186

    Article  Google Scholar 

  51. McCamy CS (1992) Correlated color temperature as an explicit function of chromaticity coordinates. Color Res Appl 17:142–144

    Article  Google Scholar 

  52. Chen GY, Liu Y, Zhang YG, Somesfalean G, Zhang ZG, Sun Q, Wang FP (2007) Bright white upconversion luminescence in rare-earth-ion-doped Y2O3 nanocrystals. Appl Phys Lett 91:133103

    Article  Google Scholar 

  53. Chen X, Li Y, Kong F, Li L, Sun Q, Wang F (2012) Red, green, blue and bright white upconversion luminescence of CaTiO3: Er3+/Tm3+/Yb3+ nanocrystals. J Alloys Compd 541:505–509

    Article  Google Scholar 

  54. Erdem M, Erguzel O, Ekmekci MK et al (2015) Bright white up-conversion emission from sol–gel derived Yb3+/Er3+/Tm3+: Y2SiO5 nanocrystalline powders. Ceram Int 41:12805–12810

    Article  Google Scholar 

  55. Hu H, Bai Y (2012) Upconversion white luminescence of TeO2:Tm3+/Er3+/Yb3+ nanoparticles. J Alloys Compd 527:25–29

    Article  Google Scholar 

  56. Pang XL, Jia CH, Li GQ, Zhang WF (2011) Bright white upconversion luminescence from Er3+–Tm3+–Yb3+ doped CaSnO3 powders. Opt Mater 34:234–238

    Article  Google Scholar 

  57. Seo YW, Choi BC, Moon BK, Park SH, Jeong JH, Kim KH, Kim JH (2017) Tunable up-conversion luminescence from Er3+/Tm3+/Yb3+ tri-doped Sr2CeO4 phosphors. J Lumin 182:240–245

    Article  Google Scholar 

  58. Mukhopadhyay L, Rai VK (2017) Upconversion based near white light emission, intrinsic optical bistability and temperature sensing in Er3+/Tm3+/Yb3+/Li+:NaZnPO4 phosphors. New J Chem 41:7650–7661

    Article  Google Scholar 

Download references

Acknowledgements

This project supported by the National Natural Science Foundation of China (51304086, 11464017), Natural Science Funds for Distinguished Young Scholar of Jiangxi Province (20171BCB23064) and the Program of Qingjiang Excellent Young Talents of Jiangxi University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinyu Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Liu, S., Ming, H. et al. Tunable multicolor and bright white upconversion luminescence in Er3+/Tm3+/Yb3+ tri-doped SrLu2O4 phosphors. J Mater Sci 53, 14469–14484 (2018). https://doi.org/10.1007/s10853-018-2632-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2632-6

Keywords

Navigation