Skip to main content

Advertisement

Log in

Phase formation under non-equilibrium processing conditions: rapid solidification processing and mechanical alloying

  • Mechanochemical Synthesis
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Rapid solidification processing (RSP) of metallic alloys, involving solidification of liquid metals at very high rates, results in the formation of a variety of metastable phases such as supersaturated solid solutions, crystalline intermetallic compounds, quasicrystalline phases, and metallic glasses. Additionally, significant refinement of the grain sizes and segregation patterns also occurs. Mechanical alloying (MA), another powerful non-equilibrium processing technique, utilizes repeated cold welding, fracturing, and rewelding of powder particles in a high-energy ball mill. MA also results in the formation of metastable phases and microstructural refinement similar to what happens during RSP. Consequently, comparisons are frequently made between the phases produced by RSP and MA and the general understanding is that they both result in similar metastable effects. A detailed analysis of the metastable phases produced by RSP and MA is made in the present work, and it is shown that even though the effects may appear similar, the mechanisms of formation and the composition ranges in which particular phases form are quite different. These two methods also have some unique features and produce different phases. The differences have been ascribed to the fact that RSP involves solidification from the melt while MA is a completely solid-state process that is not restricted by the phase diagram.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Suryanarayana C (ed) (1999) Non-equilibrium processing of materials. Pergamon, Oxford

    Google Scholar 

  2. Suryanarayana C (1984) Metallic glasses. Bull Mater Sci 6:579–594

    Article  Google Scholar 

  3. Liebermann HH (ed) (1993) Rapidly solidified alloys: processes, structures, properties, applications. Marcel Dekker, New York

    Google Scholar 

  4. Suryanarayana C, Inoue A (2018) Bulk metallic glasses, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  5. Suryanarayana C, Jones H (1988) Formation and characteristics of quasicrystalline phases: a review. Int J Rapid Solidif 3:253–293

    Google Scholar 

  6. Trebin HR (ed) (2003) Quasicrystals: structure and physical properties. Wiley-VCH, Weinheim

    Google Scholar 

  7. Suryanarayana C (1995) Nanocrystalline materials. Int Mater Rev 40:41–64

    Article  Google Scholar 

  8. Gleiter H (2000) Nanostructured materials: basic concepts and microstructure. Acta Mater 48:1–29

    Article  Google Scholar 

  9. Suryanarayana C (2005) Recent developments in nanostructured materials. Adv Eng Mater 7:983–992

    Article  Google Scholar 

  10. Turnbull D (1981) Metastable structures in metallurgy. Metall Trans A 12:695–708

    Article  Google Scholar 

  11. Martin G, Bellon P (1997) Driven alloys. Solid State Phys 50:189–331

    Article  Google Scholar 

  12. Duwez P, Willens RH, Klement W Jr (1960) Continuous series of metastable solid solutions in Ag–Cu alloys. J Appl Phys 31:1136–1137

    Article  Google Scholar 

  13. Duwez P, Willens RH, Klement W Jr (1960) Metastable electron compound in Ag–Ge alloys. J Appl Phys 31:1137

    Article  Google Scholar 

  14. Klement W Jr, Willens RH, Duwez (1960) Non-crystalline structure in solidified gold–silicon alloys. Nature 187:869–870

    Article  Google Scholar 

  15. Duwez P (1967) Structure and properties of alloys rapidly quenched from the liquid state. Trans ASM Q 60:607–633

    Google Scholar 

  16. Suryanarayana C (1991) In: Cahn RW (ed) Processing of metals and alloys. Materials science and technology: a comprehensive treatment, vol 15. VCH, Weinheim, pp 57–110

    Google Scholar 

  17. Jones H (2001) A perspective on the development of rapid solidification and nonequilibrium processing and its future. Mater Sci Eng A304(306):11–19

    Article  Google Scholar 

  18. Nishiyama N, Takenaka K, Miura H, Saido N, Zeng YQ, Inoue A (2012) The world’s biggest glassy alloy ever made. Intermetallics 30:19–24

    Article  Google Scholar 

  19. Suryanarayana C, Inoue A (2013) Iron-based bulk metallic glasses. Int Mater Rev 58:131–166

    Article  Google Scholar 

  20. Suryanarayana C (2002) Rapid solidification processing. In: Buschow KHJ, Cahn RW, Flemings MC, Kramer EJ, Mahajan S (eds) Encyclopedia of materials: science and technology—updates. Pergamon Press, Oxford, pp 1–10

    Google Scholar 

  21. Benjamin JS (1990) Mechanical alloying: a perspective. Metal Powder Rep 45:122–127

    Article  Google Scholar 

  22. Suryanarayana C, Klassen T, Ivanov E (2011) Synthesis of nanocomposites and amorphous alloys by mechanical alloying. J Mater Sci 46:6301–6315. https://doi.org/10.1007/s10853-011-5287-0

    Article  Google Scholar 

  23. Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46:1–184

    Article  Google Scholar 

  24. Suryanarayana C (2004) Mechanical alloying and milling. Marcel Dekker, New York

    Book  Google Scholar 

  25. Takacs L (2002) Self-sustaining reactions induced by ball milling. Prog Mater Sci 47:355–414

    Article  Google Scholar 

  26. Suryanarayana C, Al-Aqeeli N (2013) Mechanically alloyed nanocomposites. Prog Mater Sci 58:383–502

    Article  Google Scholar 

  27. Anantharaman TR, Suryanarayana C (1971) A decade of quenching from the melt. J Mater Sci 6:1111–1135. https://doi.org/10.1007/BF00980610

    Article  Google Scholar 

  28. Jones H (1982) Rapid solidification of metals and alloys. The Institution of Metallurgists, London

    Google Scholar 

  29. Uenishi K, Kobayashi KF, Ishihara KN, Shingu PH (1991) Formation of supersaturated solid solution in the Ag–Cu system by mechanical alloying. Mater Sci Eng A134:1342–1345

    Article  Google Scholar 

  30. Linde RK (1966) Lattice parameters of metastable silver–copper alloys. J Appl Phys 37:934

    Article  Google Scholar 

  31. Suryanarayana C, Froes FH (1990) Nanocrystalline titanium–magnesium alloys through mechanical alloying. J Mater Res 5:1880–1886

    Article  Google Scholar 

  32. Suryanarayana C, Liu JL (2012) Processing and characterization of mechanically alloyed immiscible metals. Int J Mater Res 103:1125–1129

    Article  Google Scholar 

  33. Pochet P, Tominez E, Chaffron L, Martin G (1995) Order-disorder transformation in Fe–Al under ball milling. Phys Rev B 52:4006–4016

    Article  Google Scholar 

  34. Darken LS, Gurry RW (1954) Physical chemistry of metals. McGraw-Hill, New York

    Google Scholar 

  35. Froes FH, Suryanarayana C, Russell K, Li C-G (1995) Synthesis of intermetallics by mechanical alloying. Mater Sci Eng A192(193):612–623

    Google Scholar 

  36. Al-Joubori A, Suryanarayana C (2015) Synthesis of metastable NiGe2 by mechanical alloying. Mater Des 87:520–526

    Article  Google Scholar 

  37. Singh D, Suryanarayana C, Mertus L, Chen R-H (2003) Extended homogeneity range of intermetallic phases in mechanically alloyed Mg–Al alloys. Intermetallics 11:373–376

    Article  Google Scholar 

  38. Al-Joubori A, Suryanarayana C (2016) Synthesis of stable and metastable phases in the Ni–Si system by mechanical alloying. Powder Technol 302:8–14

    Article  Google Scholar 

  39. Suryanarayana C, Al-Joubori A (2018) Effect of initial composition on phase selection in Ni–Si powder blends processed by mechanical alloying. Mater Manufactur Proc 33:840–848

    Article  Google Scholar 

  40. Datta MK, Pabi SK, Murty BS (2000) Phase fields of nickel silicides obtained by mechanical alloying in the nanocrystalline state. J Appl Phys 87:8393–8400

    Article  Google Scholar 

  41. Zhou AJ, Zhao XB, Zhu TJ, Dasgupta T, Stiewe C, Hassdorf R, Mueller E (2010) Mechanochemical decomposition of higher manganese silicides in the ball milling process. Intermetallics 18:2051–2056

    Article  Google Scholar 

  42. Suryanarayana C (1995) Does a disordered γ-TiAl phase exist in mechanically alloyed Ti–Al powders? Intermetallics 3:153–160

    Article  Google Scholar 

  43. Sato K, Ishizaki K, Chen GH, Frefer A, Suryanarayana C, Froes FH (1993) Fine structure analysis of mechanically alloyed titanium aluminides. In: Moore JJ, Lavernia EJ, Froes FH (eds) Proceedings of the international conference on advanced synthesis of engineered structural materials, August 31–September 2, 1992. ASM International, Materials Park, pp 221–225

    Google Scholar 

  44. Seelam UMR, Barkhordarian G, Suryanarayana C (2009) Is there a hexagonal close-packed (hcp) → face-centered cubic (fcc) allotropic transformation in mechanically milled Group IVB elements? J Mater Res 24:3454–3461

    Article  Google Scholar 

  45. Patil U, Hong SJ, Suryanarayana C (2005) An unusual phase transformation during mechanical alloying of an Fe-based bulk metallic glass composition. J Alloy Compd 389:121–126

    Article  Google Scholar 

  46. Sharma S, Suryanarayana C (2007) Mechanical crystallization of Fe-based amorphous alloys. J Appl Phys 102:083544-1–083544-7

  47. Sharma S, Suryanarayana C (2008) Effect of carbon addition on the glass-forming ability of mechanically alloyed Fe-based alloys. J Appl Phys 103:013504-1–013504-5

  48. Suryanarayana C, Wang WK, Iwasaki H, Masumoto T (1980) High pressure synthesis of A15 Nb3Si phase from amorphous titanium-silicon alloys. Solid State Commun 34:861–863

    Article  Google Scholar 

  49. Trudeau ML, Schulz R, Dussault D, Van Neste A (1990) Structural changes during high-energy ball milling of iron-based amorphous alloys: is high-energy ball milling equivalent to a thermal process? Phys Rev Lett 64:99–102

    Article  Google Scholar 

  50. Guo FQ, Lu K (1997) Ball-milling-induced crystallization and ball-milling effect on thermal crystallization kinetics in an amorphous FeMoSiB alloy. Metall Mater Trans A28:1123–1131

    Article  Google Scholar 

  51. Yermakov AE, Yurchikov EE, Barinov VA (1981) The magnetic properties of amorphous Y–Co alloy powders obtained by mechanical comminution. Phys Met Metallogr 52(6):50–58

    Google Scholar 

  52. Yermakov AE, Barinov VA, Yurchikov EE (1982) The change in the magnetic properties of Gd–Co alloy powders during their amorphization by comminution. Phys Met Metallogr 54(5):90–96

    Google Scholar 

  53. Massalski TB, Okamoto H, Subramanian PR, Kacprzak L (eds) (1990) Binary alloy phase diagrams, 2nd edn. ASM International, Materials Park

    Google Scholar 

  54. Omuro K, Miura H (1995) Amorphization of mechanically alloyed Fe–C and Fe–N materials with additive elements and their concentration dependence. Mater Sci Forum 179–181:273–280

    Article  Google Scholar 

  55. Ruhl RC, Giessen BC, Cohen M, Grant NJ (1967) New microcrystalline phases in the Nb–Ni and Ta–Ni systems. Acta Metall 15:1693–1702

    Article  Google Scholar 

  56. Petzoldt F (1988) Synthesis and process characterization of mechanically alloyed amorphous Ni–Nb powders. J Less Common Metals 140:85–92

    Article  Google Scholar 

  57. Giessen BC, Madhava M, Polk DE, Vander Sande J (1976) Refractory amorphous inter-transition metal alloys. Mater Sci Eng 23:145–150

    Article  Google Scholar 

  58. Rohr L, Reimann P, Richmond T, Güntherodt HJ (1991) Refractory metallic glasses. Mater Sci Eng A133:715–717

    Article  Google Scholar 

  59. Lee PY, Chen TR (1994) Formation of amorphous Ni–Ta alloy powders by mechanical alloying. J Mater Sci Lett 13:888–890

    Article  Google Scholar 

  60. Lee PY, Yang JL, Lin HM (1998) Amorphization behavior in mechanically alloyed Ni–Ta powders. J Mater Sci 33:235–239. https://doi.org/10.1023/A:1004334805505

    Article  Google Scholar 

  61. Sakata M, Cowlam N, Davies HA (1982) In: Masumoto T, Suzuki K (eds) Proceedings of the international conference on rapidly quenched metals IV (RQ4). Japan Inst Metals, Sendai, pp 327–330

    Google Scholar 

  62. Rabinkin A, Liebermann H, Pounds S, Taylor T, Reidinger F, Lui SC (1991) Amorphous TiZr; base Metglas brazing filler metals. Scripta Metall Mater 25:399–404

    Article  Google Scholar 

  63. Murty BS, Ranganathan S, Mohan Rao M (1992) Solid state amorphization in binary Ti–Ni, Ti–Cu and ternary Ti–Ni–Cu system by mechanical alloying. Mater Sci Eng A149:231–240

    Article  Google Scholar 

  64. Krauss W, Politis C, Weimar P (1988) Preparation and compaction of mechanically alloyed amorphous materials. Metal Powder Rep 43:231–238

    Google Scholar 

  65. Buschow KHJ (1984) Stability and electrical transport properties of amorphous Ti1−xNix alloys. J Phys F Metal Phys 13:563–571

    Article  Google Scholar 

  66. Altounian Z, Shank RJ, Strom-Olsen JO (1985) Crystallization characteristics of Co–Zr metallic glasses from Co52Zr48 to Co20Zr80. J Appl Phys 58:1192–1195

    Article  Google Scholar 

  67. Eckert J, Schultz L, Urban K (1988) Glass-forming ranges in transition metal-Zr alloys prepared by mechanical alloying. J Less Common Metals 145:283–291

    Article  Google Scholar 

  68. Altounian Z, Volkert CA, Strom-Olsen JO (1985) Crystallization characteristics of Fe–Zr metallic glasses from Fe43Zr57 to Fe20Zr80. J Appl Phys 57:1777–1782

    Article  Google Scholar 

  69. Altounian Z, Guo-hua T, Strom-Olsen JO (1983) Crystallization characteristics of Ni–Zr metallic glasses from Ni20Zr80 to Ni70Zr30. J Appl Phys 54:3111–3116

    Article  Google Scholar 

  70. Eckert J, Schultz L, Hellstern E, Urban K (1988) Glass-forming range in mechanically alloyed Ni–Zr and the influence of the milling intensity. J Appl Phys 64:3224–3228

    Article  Google Scholar 

  71. Turnbull D (1969) Under what conditions can a glass be formed? Contemp Phys 10:473–488

    Article  Google Scholar 

  72. Inoue A (2000) Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater 48:279–306

    Article  Google Scholar 

  73. Bazlov AI, Tsarkov AA, Ketov SV, Suryanarayana C, Louzguine-Luzgin DV (2018) Effect of multiple alloying elements on the glass-forming ability, thermal stability, and crystallization behavior of Zr-based alloys. Metall Mater Trans A49:644–651

    Article  Google Scholar 

  74. Suryanarayana C, Seki I, Inoue A (2009) A critical analysis of the glass-forming ability of alloys. J Non Cryst Solids 355:355–360

    Article  Google Scholar 

  75. Sharma S, Vaidyanathan R, Suryanarayana C (2007) Criterion for predicting the glass-forming ability of alloys. Appl Phys Lett 90:111915

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Suryanarayana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suryanarayana, C. Phase formation under non-equilibrium processing conditions: rapid solidification processing and mechanical alloying. J Mater Sci 53, 13364–13379 (2018). https://doi.org/10.1007/s10853-018-2197-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2197-4

Keywords

Navigation