Skip to main content
Log in

Effect of flake powder metallurgy on thermal conductivity of graphite flakes reinforced aluminum matrix composites

  • Composites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The optimization of metal–matrix composite material is linked firstly with the intrinsic properties of the matrix and the reinforcement used and secondly with the reinforcement–matrix interfacial zone and the distribution/orientation of the reinforcement inside the metal–matrix. Flake powder metallurgy was used to fabricate graphite flake reinforced aluminum matrix (Al/GF) composites fabricated by vacuum hot pressing. Two types of aluminum powders morphology were used: spherical (AlS) and flake (AlF) powders. A higher thermal conductivity in the in-plane direction of the graphite flakes was obtained for Al/GF composite materials fabricated with aluminum flake powder. In addition to a better orientation of the GF in the flake aluminum matrix, a 3D puckered surface and plane surface are formed at the Al/GF interface in, respectively, AlS/GF and AlF/GF composite materials. Due to the morphology incompatibility between the graphite flakes and the spherical powder, the damaged inner structure of GF contributes to a limited enhancement of thermal conductivity in AlS/GF composite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Zweben C (1998) Advances in composite materials for thermal management in electronic packaging. JOM 50(6):47–51

    Article  Google Scholar 

  2. Zweben C (2005) Ultrahigh-thermal-conductivity packaging materials. In: Annual IEEE semiconductor thermal measurement and management symposium, pp 168–174

  3. Rohatgi PK (1993) Metal–matrix composites. Defence Sci J 43(4):323–349

    Article  Google Scholar 

  4. Mallik S, Ekere N, Best C, Bhatti R (2011) Investigation of thermal management materials for automotive electronic control units. Appl Therm Eng 31(2–3):355–362

    Article  Google Scholar 

  5. Yoshida K, Morigami H (2004) Thermal properties of diamond/copper composite material. Microelectron Reliab 44(2):303–308

    Article  Google Scholar 

  6. Ruch PW, Beffort O, Kleiner S, Weber L, Uggowitzer PJ (2006) Selective interfacial bonding in Al(Si)-diamond composites and its effect on thermal conductivity. Compos Sci Technol 66(15):2677–2685

    Article  Google Scholar 

  7. Beffort O, Khalid FA, Weber L, Ruch P, Klotz UE, Meier S, Kleiner S (2006) Interface formation in infiltrated Al(Si)/diamond composites. Diam Relat Mater 15(9):1250–1260

    Article  Google Scholar 

  8. Kurita H, Feuillet E, Guillemet T, Heintz J-M, Kawasaki A, Silvain J-F (2014) Simple fabrication and characterization of discontinuous carbon fiber reinforced aluminum matrix composite for lightweight heat sink applications. Acta Metall Sin (English Lett) 27(4):714–722

    Article  Google Scholar 

  9. Pierson HO (1993) Handbook of carbon, graphite, diamond and fullerenes. Noyes Publications, Park Ridge, pp 194–195

    Google Scholar 

  10. Chen JK, Huang IS (2013) Thermal properties of aluminum-graphite composites by powder metallurgy. Compos Part B Eng 44(1):698–703

    Article  Google Scholar 

  11. Murakami M, Nishiki N, Nakamura K, Ehara J, Okada H, Kouzaki T, Watanabe K et al (1992) Yoshimura, S. High-quality and highly oriented graphite block from polycondensation polymer films. Carbon 30(2):255–262

    Article  Google Scholar 

  12. Klemens PG, Pedraza DF (1994) Thermal conductivity of graphite in the basal plane. Carbon 32(4):735–741

    Article  Google Scholar 

  13. Fu Q, Yang J, Chen Y, Li D, Xu D (2015) Experimental evidence of very long intrinsic phonon mean free path along the c-axis of graphite. Appl Phys Lett 106(3):031905

    Article  Google Scholar 

  14. Huang Y, Su Y, Li S, Ouyang Q, Zhang G, Zhang L, Zhang D (2016) Fabrication of graphite film/aluminum composites by vacuum hot pressing: process optimization and thermal conductivity. Compos B Eng 107:43–50

    Article  Google Scholar 

  15. Tao P, Shang W, Song C, Shen Q, Zhang F, Luo Z, Yi N, Zhang D, Deng T (2015) Bioinspired engineering of thermal materials. Adv Mater 27(3):428–463

    Article  Google Scholar 

  16. Metzler RA, Abrecht M, Olabisi RM, Ariosa D, Johnson CJ, Frazer BH, Coppersmith SN et al (2007) Architecture of columnar nacre, and implications for its formation mechanism. Phys Rev Lett 98(26):268102

    Article  Google Scholar 

  17. Rousseau M, Lopez E, Stempflé P, Brendlé M, Franke L, Guette A, Naslain R et al (2005) Multiscale structure of sheet nacre. Biomaterials 26(31):6254–6262

    Article  Google Scholar 

  18. Fan G, Xu R, Tan Z, Zhang D, Li Z (2014) Development of flake powder metallurgy in fabricating metal–matrix composites: a review. Acta Metall Sin (English Lett) 27(5):806–815

    Article  Google Scholar 

  19. Jiang L, Fan G, Li Z, Kai X, Zhang D, Chen Z, Humphries S et al (2011) An approach to the uniform dispersion of a high volume fraction of carbon nanotubes in aluminum powder. Carbon 49(6):1965–1971

    Article  Google Scholar 

  20. Jiang L, Li Z, Fan G, Cao L, Zhang D (2012) The use of flake powder metallurgy to produce carbon nanotube (CNT)/aluminum composites with a homogenous CNT distribution. Carbon 50(5):1993–1998

    Article  Google Scholar 

  21. Jiang L, Li Z, Fan G, Cao L, Zhang D (2012) Strong and ductile carbon nanotube/aluminum bulk nanolaminated composites with two-dimensional alignment of carbon nanotubes. Scr Mater 66(6):331–334

    Article  Google Scholar 

  22. Jiang L, Li Z, Fan G, Zhang D (2011) A flake powder metallurgy approach to Al2O3/Al biomimetic nanolaminated composites with enhanced ductility. Scr Mater 65(5):412–415

    Article  Google Scholar 

  23. Li Z, Guo Q, Li Z, Fan G, Xiong D-B, Su Y, Zhang J et al (2015) Enhanced mechanical properties of graphene (reduced graphene oxide)/aluminum composites with a bioinspired nanolaminated structure. Nano Lett. 15(12):8077–8083

    Article  Google Scholar 

  24. Weber L, Tavangar R (2007) On the influence of active element content on the thermal conductivity and thermal expansion of Cu–X (X = Cr, B) diamond composites. Scr Mater 57(11):988–991

    Article  Google Scholar 

  25. Azina C, Roger J, Joulain A, Mauchamp V, Mortaigne B, Lu YF, Silvain J-F (2018) Solid-liquid co-existent phase process: towards fully dense and thermally efficient Cu/C composite materials. J Alloy Compd 738:292–300

    Article  Google Scholar 

  26. Molina JM, Louis E (2015) Anisotropy in thermal conductivity of graphite flakes-SiCp/matrix composites: implications in heat sinking design for thermal management applications. Mater Charact 109:107–115

    Article  Google Scholar 

  27. Zhou C, Huang W, Chen Z, Ji G, Wang ML, Chen D, Wang HW (2015) In-plane thermal enhancement behaviors of Al matrix composites with oriented graphite flake alignment. Compos B Eng 70:256–262

    Article  Google Scholar 

  28. Li W, Liu Y, Wu G (2015) Preparation of graphite flakes/Al with preferred orientation and high thermal conductivity by squeeze casting. Carbon 95:545–551

    Article  Google Scholar 

  29. Prieto R, Molina JM, Narciso J, Louis E (2011) Thermal conductivity of graphite flakes-SiC particles/metal composites. Compos Part A Appl Sci Manuf 42(12):1970–1977

    Article  Google Scholar 

  30. Kurita H, Miyazaki T, Kawasaki A, Lu Y, Silvain J-F (2015) Interfacial microstructure of graphite flake reinforced aluminum matrix composites fabricated via hot pressing. Compos A Appl Sci Manuf 73:125–131

    Article  Google Scholar 

  31. Oddone V, Boerner B, Reich S (2017) Composites of aluminum alloy and magnesium alloy with graphite showing low thermal expansion and high specific thermal conductivity. Sci Technol Adv Mater 18(1):180–186

    Article  Google Scholar 

  32. Liu Q, He X-B, Ren S-B, Zhang C, Ting-Ting L, Qu X-H (2014) Thermophysical properties and microstructure of graphite flake/copper composites processed by electroless copper coating. J Alloy Compd 587:255–259

    Article  Google Scholar 

  33. Chen J, Ren S, He X, Qu X (2017) Properties and microstructure of nickel-coated graphite flakes/copper composites fabricated by spark plasma sintering. Carbon 121:25–34

    Article  Google Scholar 

  34. Seldin EJ (1966) Stress–strain properties of polycrystalline graphites in tension and compression at room temperature. Carbon 4(2):177–191

    Article  Google Scholar 

  35. Hasani S, Panjepour M, Shamanian M (2012) The oxidation mechanism of pure aluminum powder particles. Oxid Metals 78(3–4):179–195

    Article  Google Scholar 

  36. Levin I, Brandon D (1998) Metastable alumina polymorphs: crystal structures and transition sequences. J Am Ceram Soc 81(8):1995–2012

    Article  Google Scholar 

  37. Vidano RP, Fischbach DB, Willis LJ, Loehr TM (1981) Observation of Raman band shifting with excitation wavelength for carbons and graphites. Solid State Commun 39(2):341–344

    Article  Google Scholar 

  38. Tuinstra F, Koenig JL (1970) Raman spectrum of graphite. J Chem Phys 53(3):1126–1130

    Article  Google Scholar 

  39. Pimenta MA, Dresselhaus G, Dresselhaus MS, Cançado LG, Jorio A, Saito R (2007) Studying disorder in graphite-based systems by Raman spectroscopy. Phys Chem Chem Phys 9(11):1276–1291

    Article  Google Scholar 

  40. Ho CY, Powell RW, Liley PE (1972) Thermal conductivity of the elements. J Phys Chem Ref Data 1(2):279–421

    Article  Google Scholar 

  41. Nan C-W, Birringer R, Clarke DR, Gleiter H (1997) Effective thermal conductivity of particulate composites with interfacial thermal resistance. J Appl Phys 81(10):6692–6699

    Article  Google Scholar 

  42. Ren S, Chen J, He X, Qu X (2018) Effect of matrix-alloying-element chromium on the microstructure and properties of graphite flakes/copper composites fabricated by hot pressing sintering. Carbon 127:412–423

    Article  Google Scholar 

  43. Molina JM, Prieto R, Narciso J, Louis E (2009) The effect of porosity on the thermal conductivity of Al-12 wt% Si/SiC composites. Scr Mater 60(7):582–585

    Article  Google Scholar 

  44. Prasher R (2008) Thermal boundary resistance and thermal conductivity of multiwalled carbon nanotubes. Phys Rev B Condens Matter Mater Phys 77(7):075424

    Article  Google Scholar 

  45. Swartz ET, Pohl RO (1989) Thermal boundary resistance. Rev Mod Phys 61(3):605–668

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the University of Bordeaux (2015-FD-24).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nabil Chamroune.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chamroune, N., Mereib, D., Delange, F. et al. Effect of flake powder metallurgy on thermal conductivity of graphite flakes reinforced aluminum matrix composites. J Mater Sci 53, 8180–8192 (2018). https://doi.org/10.1007/s10853-018-2139-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2139-1

Keywords

Navigation