Skip to main content
Log in

Solution-processed CuSbS2 solar cells based on metal–organic molecular solution precursors

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Developing earth-abundant and low-toxic light absorber materials is crucial for next-generation photovoltaics. In this article, a simple solution-process method for the deposition of CuSbS2 thin film is presented. An equimolar mixture of Cu2O and Sb2O3 was dissolved in butyldithiocarbamic acid, forming a thermally degradable metal–organic molecular solution. Uniform and phase-pure CuSbS2 thin films can be obtained by spin coating this precursor solution followed by a fast annealing process in an inert gas environment. Preferential crystal growth of (111) lattice planes was observed in films prepared at annealing temperature of more than 290 °C. The films possess a direct band gap of 1.6 eV with high absorption coefficient. CuSbS2 planar heterojunction solar cells of FTO/CdS/CuSbS2/Au structure were assembled achieving a power conversion efficiency of 0.68% under one sun illumination. This metal–organic molecular solution precursor provides a simple method to fabricate multicomponent inorganic chalcogenide films for photovoltaic application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Polman A, Knight M, Garnett EC, Ehrler B, Sinke WC (2016) Photovoltaic materials: present efficiencies and future challenges. Science 352(6283):aad4424. doi:10.1126/science.aad4424

    Article  Google Scholar 

  2. Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED, Levi DH, Ho-Baillie AWY (2017) Solar cell efficiency tables (version 49). Prog Photovolt Res Appl 25(1):3–13. doi:10.1002/pip.2855

    Article  Google Scholar 

  3. Ramakrishna Reddy KT, Koteswara Reddy N, Miles RW (2006) Photovoltaic properties of SnS based solar cells. Sol Energy Mater Sol Cells 90(18–19):3041–3046. doi:10.1016/j.solmat.2006.06.012

    Article  Google Scholar 

  4. Sinsermsuksakul P, Sun L, Lee SW, Park HH, Kim SB, Yang C, Gordon RG (2014) Overcoming efficiency limitations of SnS-Based solar cells. Adv Energy Mater 4(15):1400496. doi:10.1002/aenm.201400496

    Article  Google Scholar 

  5. Puthussery J, Seefeld S, Berry N, Gibbs M, Law M (2011) Colloidal iron pyrite (FeS2) nanocrystal inks for thin-film photovoltaics. J Am Chem Soc 133(4):716–719. doi:10.1021/ja1096368

    Article  Google Scholar 

  6. Choi YC, Lee DU, Noh JH, Kim EK, Seok SI (2014) Highly improved Sb2S3 sensitized-inorganic–organic heterojunction solar cells and quantification of traps by deep-level transient spectroscopy. Adv Funct Mater 24(23):3587–3592. doi:10.1002/adfm.201304238

    Article  Google Scholar 

  7. Yuan S, Deng H, Dong D, Yang X, Qiao K, Hu C, Song H, Song H, He Z, Tang J (2016) Efficient planar antimony sulfide thin film photovoltaics with large grain and preferential growth. Sol Energy Mater Sol Cells 157:887–893. doi:10.1016/j.solmat.2016.07.050

    Article  Google Scholar 

  8. Zhou Y, Wang L, Chen S, Qin S, Liu X, Chen J, Xue D-J, Luo M, Cao Y, Cheng Y, Sargent EH, Tang J (2015) Thin-film Sb2Se3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries. Nat Photonics 9(6):409–415. doi:10.1038/nphoton.2015.78

    Article  Google Scholar 

  9. Wang L, Li D, Li K, Chen C, Deng H, Gao L, Zhao Y, Jiang F, Li L, Huang F, He Y, Song H, Niu G, Tang J (2017) Stable 6%-efficient Sb2Se3 solar cells with a ZnO buffer layer. Nat Energy 2(4):17046. doi:10.1038/nenergy.2017.46

    Article  Google Scholar 

  10. Septina W, Ikeda S, Iga Y, Harada T, Matsumura M (2014) Thin film solar cell based on CuSbS2 absorber fabricated from an electrochemically deposited metal stack. Thin Solid Films 550:700–704. doi:10.1016/j.tsf.2013.11.046

    Article  Google Scholar 

  11. Banu S, Ahn SJ, Ahn SK, Yoon K, Cho A (2016) Fabrication and characterization of cost-efficient CuSbS2 thin film solar cells using hybrid inks. Sol Energy Mater Sol Cells 151:14–23. doi:10.1016/j.solmat.2016.02.013

    Article  Google Scholar 

  12. Bernechea M, Miller NC, Xercavins G, So D, Stavrinadis A, Konstantatos G (2016) Solution-processed solar cells based on environmentally friendly AgBiS2 nanocrystals. Nat Photonics 10(8):521–525. doi:10.1038/nphoton.2016.108

    Article  Google Scholar 

  13. Todorov TK, Reuter KB, Mitzi DB (2010) High-efficiency solar cell with earth-abundant liquid-processed absorber. Adv Mater 22(20):E156–E159. doi:10.1002/adma.200904155

    Article  Google Scholar 

  14. Guo Q, Ford GM, Yang W-C, Walker BC, Stach EA, Hillhouse HW, Agrawal R (2010) Fabrication of 7.2% efficient CZTSSe solar cells using CZTS nanocrystals. J Am Chem Soc 132(49):17384–17386. doi:10.1021/ja108427b

    Article  Google Scholar 

  15. Miskin CK, Yang W, Hages CJ, Carter NJ, Joglekar CS, Stach EA, Agrawal R (2015) 9.0% efficient Cu2ZnSn(S,Se)4 solar cells from selenized nanoparticle inks. Prog Photovolt Res Appl 23(5):654–659. doi:10.1002/pip.2472

    Article  Google Scholar 

  16. Kim J, Hiroi H, Todorov TK, Gunawan O, Kuwahara M, Gokmen T, Nair D, Hopstaken M, Shin B, Lee YS, Wang W, Sugimoto H, Mitzi DB (2014) High efficiency Cu2ZnSn(S, Se)4 solar cells by applying a double In2S3/CdS emitter. Adv Mater 26(44):7427–7431. doi:10.1002/adma.201402373

    Article  Google Scholar 

  17. Welch AW, Zawadzki PP, Lany S, Wolden CA, Zakutayev A (2015) Self-regulated growth and tunable properties of CuSbS2 solar absorbers. Sol Energy Mater Sol Cells 132:499–506. doi:10.1016/j.solmat.2014.09.041

    Article  Google Scholar 

  18. Wan L, Ma C, Hu K, Zhou R, Mao X, Pan S, Wong LH, Xu J (2016) Two-stage co-evaporated CuSbS2 thin films for solar cells. J Alloys Compd 680:182–190. doi:10.1016/j.jallcom.2016.04.193

    Article  Google Scholar 

  19. Yang B, Wang L, Han J, Zhou Y, Song H, Chen S, Zhong J, Lv L, Niu D, Tang J (2014) CuSbS2 as a promising earth-abundant photovoltaic absorber material: a combined theoretical and experimental study. Chem Mater 26(10):3135–3143. doi:10.1021/cm500516v

    Article  Google Scholar 

  20. Yu L, Kokenyesi RS, Keszler DA, Zunger A (2013) Inverse design of high absorption thin-film photovoltaic materials. Adv Energy Mater 3(1):43–48. doi:10.1002/aenm.201200538

    Article  Google Scholar 

  21. Sugaki A, Shima H, Kitakaze A (1973) Phase relations of the Cu2S–Sb2S3 system. Technology reports of Yamaguchi University

  22. Yang C, Wang Y, Li S, Wan D, Huang F (2012) CuSbSe2-assisted sintering of CuInSe2 at low temperature. J Mater Sci 47(20):7085–7089. doi:10.1007/s10853-012-6385-3

    Article  Google Scholar 

  23. de Souza Lucas FW, Welch AW, Baranowski LL, Dippo PC, Hempel H, Unold T, Eichberger R, Blank B, Rau U, Mascaro LH, Zakutayev A (2016) Effects of thermochemical treatment on CuSbS2 photovoltaic absorber quality and solar cell reproducibility. J Phys Chem C 120(33):18377–18385. doi:10.1021/acs.jpcc.6b04206

    Article  Google Scholar 

  24. Riha SC, Koegel AA, Emery JD, Pellin MJ, Martinson AB (2017) Low-temperature atomic layer deposition of CuSbS2 for thin-film photovoltaics. ACS Appl Mater Interfaces 9(5):4667–4673. doi:10.1021/acsami.6b13033

    Article  Google Scholar 

  25. Rodríguez-Lazcano Y, Nair MTS, Nair PK (2005) Photovoltaic p-i-n structure of Sb2S3 and CuSbS2 absorber films obtained via chemical bath deposition. J Electrochem Soc 152(8):G635. doi:10.1149/1.1945387

    Article  Google Scholar 

  26. Vinayakumar V, Shaji S, Avellaneda D, Das Roy TK, Castillo GA, Martinez JAA, Krishnan B (2017) CuSbS2 thin films by rapid thermal processing of Sb2S3-Cu stack layers for photovoltaic application. Sol Energy Mater Sol Cells 164:19–27. doi:10.1016/j.solmat.2017.02.005

    Article  Google Scholar 

  27. Liu Z, Huang J, Han J, Hong T, Zhang J, Liu Z (2016) CuSbS2: a promising semiconductor photo-absorber material for quantum dot sensitized solar cells. Phys Chem Chem Phys 18(25):16615–16620. doi:10.1039/c6cp01688j

    Article  Google Scholar 

  28. Macías C, Lugo S, Benítez Á, López I, Kharissov B, Vázquez A, Peña Y (2017) Thin film solar cell based on CuSbS2 absorber prepared by chemical bath deposition (CBD). Mater Res Bull 87:161–166. doi:10.1016/j.materresbull.2016.11.028

    Article  Google Scholar 

  29. Chen K, Zhou J, Chen W, Chen Q, Zhou P, Liu Y (2016) A green synthesis route for the phase and size tunability of copper antimony sulfide nanocrystals with high yield. Nanoscale 8(9):5146–5152. doi:10.1039/c5nr09097k

    Article  Google Scholar 

  30. Ramasamy K, Sims H, Butler WH, Gupta A (2014) Mono-, few-, and multiple layers of copper antimony sulfide (CuSbS2): a ternary layered sulfide. J Am Chem Soc 136(4):1587–1598. doi:10.1021/ja411748g

    Article  Google Scholar 

  31. Suehiro S, Horita K, Yuasa M, Tanaka T, Fujita K, Ishiwata Y, Shimanoe K, Kida T (2015) Synthesis of copper-antimony-sulfide nanocrystals for solution-processed solar cells. Inorg Chem 54(16):7840–7845. doi:10.1021/acs.inorgchem.5b00858

    Article  Google Scholar 

  32. Choi YC, Yeom EJ, Ahn TK, Seok SI (2015) CuSbS2 -sensitized inorganic-organic heterojunction solar cells fabricated using a metal-thiourea complex solution. Angew Chem Int Ed Engl 54(13):4005–4009. doi:10.1002/anie.201411329

    Article  Google Scholar 

  33. Mitzi DB, Kosbar LL, Murray CE, Copel M, Afzali A (2004) High-mobility ultrathin semiconducting films prepared by spin coating. Nature 428(6980):299–303. doi:10.1038/nature02389

    Article  Google Scholar 

  34. Webber DH, Brutchey RL (2013) Alkahest for V2VI3 chalcogenides: dissolution of nine bulk semiconductors in a diamine-dithiol solvent mixture. J Am Chem Soc 135(42):15722–15725. doi:10.1021/ja4084336

    Article  Google Scholar 

  35. Zhang R, Cho S, Lim DG, Hu X, Stach EA, Handwerker CA, Agrawal R (2016) Metal-metal chalcogenide molecular precursors to binary, ternary, and quaternary metal chalcogenide thin films for electronic devices. Chem Commun (Camb) 52(28):5007–5010. doi:10.1039/c5cc09915c

    Article  Google Scholar 

  36. Tian Q, Wang G, Zhao W, Chen Y, Yang Y, Huang L, Pan D (2014) Versatile and low-toxic solution approach to binary, ternary, and quaternary metal sulfide thin films and its application in Cu2ZnSn(S, Se)4 solar cells. Chem Mater 26(10):3098–3103. doi:10.1021/cm5002412

    Article  Google Scholar 

  37. Wang G, Wang S, Cui Y, Pan D (2012) A novel and versatile strategy to prepare metal-organic molecular precursor solutions and its application in Cu(In, Ga)(S, Se)2 solar cells. Chem Mater 24(20):3993–3997. doi:10.1021/cm3027303

    Article  Google Scholar 

  38. Wang X, Li J, Liu W, Yang S, Zhu C, Chen T (2017) A fast chemical approach towards Sb2S3 film with a large grain size for high-performance planar heterojunction solar cells. Nanoscale 9(10):3386–3390. doi:10.1039/C7NR00154A

    Article  Google Scholar 

  39. Tian Q, Huang L, Zhao W, Yang Y, Wang G, Pan D (2015) Metal sulfide precursor aqueous solutions for fabrication of Cu2ZnSn(S, Se)4 thin film solar cells. Green Chem 17(2):1269–1275. doi:10.1039/c4gc01828a

    Article  Google Scholar 

  40. Contreras MA, Romero MJ, To B, Hasoon F, Noufi R, Ward S, Ramanathan K (2002) Optimization of CBD CdS process in high-efficiency Cu(In, Ga)Se2-based solar cells. Thin Solid Films 303–304:204–211. doi:10.1016/S0040-6090(01)01538-3

    Article  Google Scholar 

  41. Wang L, Luo M, Qin S, Liu X, Chen J, Yang B, Leng M, Xue D, Zhou Y, Gao L, Song H, Tang J (2015) Ambient CdCl2 treatment on CdS buffer layer for improved performance of Sb2Se3 thin film photovoltaics. Appl Phys Lett 107(14):143902. doi:10.1063/1.4932544

    Article  Google Scholar 

  42. Wang G, Zhao W, Cui Y, Tian Q, Gao S, Huang L, Pan D (2013) Fabrication of a Cu2ZnSn(S, Se)4 photovoltaic device by a low-toxicity ethanol solution process. ACS Appl Mater Interfaces 5(20):10042–10047. doi:10.1021/am402558a

    Article  Google Scholar 

  43. Zhao W, Wang G, Tian Q, Huang L, Gao S, Pan D (2015) Solution-processed Cu2CdSn(S, Se)4 thin film solar cells. Sol Energy Mater Sol Cells 133:15–20. doi:10.1016/j.solmat.2014.10.040

    Article  Google Scholar 

  44. McCarthy CL, Cottingham P, Abuyen K, Schueller EC, Culver SP, Brutchey RL (2016) Earth abundant CuSbS2 thin films solution processed from thiol-amine mixtures. J Mater Chem C 4(26):6230–6233. doi:10.1039/C6TC02117D

    Article  Google Scholar 

  45. van Embden J, Latham K, Duffy NW, Tachibana Y (2013) Near-infrared absorbing Cu12Sb4S13 and Cu3SbS4 nanocrystals: synthesis, characterization, and photoelectrochemistry. J Am Chem Soc 135(31):11562–11571. doi:10.1021/ja402702x

    Article  Google Scholar 

  46. Wang L, Yang B, Xia Z, Leng M, Zhou Y, Xue D, Zhong J, Gao L, Song H, Tang J (2016) Synthesis and characterization of hydrazine solution processed Cu12Sb4S13 film. Sol Energy Mater Sol Cells 144:33–39. doi:10.1016/j.solmat.2015.08.016

    Article  Google Scholar 

  47. Ornelas-Acosta RE, Shaji S, Avellaneda D, Castillo GA, Das Roy TK, Krishnan B (2015) Thin films of copper antimony sulfide: a photovoltaic absorber material. Mater Res Bull 61:215–225. doi:10.1016/j.materresbull.2014.10.027

    Article  Google Scholar 

  48. Godel KC, Choi YC, Roose B, Sadhanala A, Snaith HJ, Seok SI, Steiner U, Pathak SK (2015) Efficient room temperature aqueous Sb2S3 synthesis for inorganic-organic sensitized solar cells with 5.1% efficiencies. Chem Commun (Camb) 51(41):8640–8643. doi:10.1039/c5cc01966d

    Article  Google Scholar 

  49. Santbergen R, Goud JM, Zeman M, van Roosmalen JAM, van Zolingen RJC (2010) The AM1.5 absorption factor of thin-film solar cells. Sol Energy Mater Sol Cells 94(5):715–723. doi:10.1016/j.solmat.2009.12.010

    Article  Google Scholar 

  50. Morales-Acevedo A (2006) Thin film CdS/CdTe solar cells: research perspectives. Sol Energy 80(6):675–681. doi:10.1016/j.solener.2005.10.008

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Distinguished Youth Foundation of Anhui Province (1708085J09), the National Basic Research Program of China under Grant No. 2016YFA0202400, 2015CB932200, the National Natural Science Foundation of China under Grant No. 21403247 and the Major/Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology (2016FXZY003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Zhu or Songyuan Dai.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 308 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Ye, Q., Chen, W. et al. Solution-processed CuSbS2 solar cells based on metal–organic molecular solution precursors. J Mater Sci 53, 2016–2025 (2018). https://doi.org/10.1007/s10853-017-1663-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1663-8

Keywords

Navigation