Skip to main content
Log in

Effect of boron on the magneto-caloric effect in Fe91−x Zr9B x (x = 3, 4, 5) amorphous alloys

  • Metals
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In the present work, Fe91−x Zr9B x (x = 3, 4, 5) amorphous alloys were employed to study the effect of boron on the magnetic properties of Fe-based amorphous alloys. Thermal and magnetic properties of Fe91−x Zr9B x (x = 3, 4, 5) amorphous alloys were measured. Although the amorphous alloys show similar glass forming ability, peak values of magnetic entropy change (−ΔS peakm ) and Curie temperature (T c) near room temperature improve significantly with increasing boron content. The improved T c, as well as −ΔS peakm , is due to the enhanced direct interaction between Fe atoms, which is ascertained by the increasing µ eff with boron addition in the Fe91−x Zr9B x (x = 3, 4, 5) amorphous alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Warburg E (1881) Magnetische Untersuchungen über einige Wirkungen der Koerzitivkraft. Ann Phys 13:141–164

    Article  Google Scholar 

  2. Tegus O, Brück E, Buschow KHJ, de Boer FR (2002) Transition-metal-based magnetic refrigerants for room-temperature applications. Nature 415:150–152

    Article  Google Scholar 

  3. Glanz J (1998) Making a bigger chill with magnets. Science 279:2045

    Article  Google Scholar 

  4. Brown GV (1976) Magnetic heat pumping near room temperature. J Appl Phys 47:3673–3680

    Article  Google Scholar 

  5. Tishin AM, Spichkin YI (2003) The magnetocaloric effect and its applications. Institute of Physics, Bristol

    Book  Google Scholar 

  6. Yu BF, Gao Q, Zhang B, Meng XZ, Chen Z (2003) Review on research of room temperature magnetic refrigeration. Inter J Refrig 26:622–636

    Article  Google Scholar 

  7. Brück E (2005) Topical review—developments in magnetocaloric refrigeration. J Phys D Appl Phys 38:R381–R391

    Article  Google Scholar 

  8. de Oliveira NA, von Ranke PJ (2010) Theoretical aspects of the magnetocaloric effect. Phys Rep 489:89–160

    Article  Google Scholar 

  9. Gschneider KA, Pecharsky VK, Tsokol AO (2005) Recent developments in magnetocaloric materials. Rep Prog Phys 68:1479–1539

    Article  Google Scholar 

  10. Pecharsky VK, Jr Gschneider K A (1997) Giant magnetocaloric effect in Gd5(Si2Ge2). Phys Rev Lett 78:4494–4497

    Article  Google Scholar 

  11. Hu FX, Shen BG, Sun JR, Wu GH (2001) Large magnetic entropy change in a Heusler alloy Ni52.6Mn23.1Ga24.3 single crystal. Phys Rev B 64:132412

    Article  Google Scholar 

  12. Ryan DH, Elouneg-Jamroz M, van Lierop J, Altounian Z, Wang HB (2003) Field and temperature induced magnetic transition in Gd5Sn4: a giant magnetocaloric material. Phys Rev Lett 90:117202

    Article  Google Scholar 

  13. Kim SJ, Lee KJ, Jung MH, Oh HJ, Kwon YS (2001) Magnetocaloric effect in La(Fe0.89Si0.11)13 irradiated by protons. J Magn Magn Mater 323:1094–1097

    Article  Google Scholar 

  14. Wada H, Tanabe Y (2001) Giant magnetocaloric effect of MnAs1−x SB x . Appl Phys Lett 79:3302

    Article  Google Scholar 

  15. Fujita A, Fujieda S, Hasegawa Y, Fukamichi K (2003) Itinerant-electron metamagnetic transition and large magnetocaloric effects in La(FexSi1−x)13 compounds and their hydrides. Phys Rev B 67:104416

    Article  Google Scholar 

  16. Luo Q, Wang WH (2010) Magnetocaloric effect in rare earth-based bulk metallic glasses. J Alloys Compd 495:209–216

    Article  Google Scholar 

  17. Xia L, Chan KC, Tang MB, Dong YD (2014) Large magnetic entropy change and adiabatic temperature rise of a Gd55Al20Co20Ni5 bulk metallic glass. J Appl Phys 115:223904

    Article  Google Scholar 

  18. Bingham NS, Wang H, Qin F, Peng HX, Sun JF, Franco V, Srikanth H, Phan MH (2012) Excellent magnetocaloric properties of melt-extracted Gd-based amorphous microwires. Appl Phys Lett 101:102407

    Article  Google Scholar 

  19. Xia L, Guan Q, Ding D, Tang MB, Dong YD (2014) Magneto-caloric response of the Gd60Co25Al15 metallic glasses. Appl Phys Lett 105:192402

    Article  Google Scholar 

  20. Yuan F, Du J, Shen B (2012) Controllable spin-glass behavior and large magnetocaloric effect in Gd-Ni-Al bulk metallic glasses. Appl Phys Lett 101:032405

    Article  Google Scholar 

  21. Xia L, Chan KC, Tang MB (2001) Enhanced glass forming ability and refrigerant capacity of a Gd55Ni22Mn3Al20 bulk metallic glass. J Alloys Compd 509:6640–6643

    Article  Google Scholar 

  22. Liu GL, Zhao DQ, Bai HY, Wang WH, Pan MX (2016) Room temperature table-like magnetocaloric effect in amorphous Gd50Co45Fe5 ribbon. J Phys D Appl Phys 49:055004

    Article  Google Scholar 

  23. Álvarez P, Llamazares JLS, Gorria P, Blanco JA (2011) Enhanced refrigerant capacity and magnetic entropy flattening using a two-amorphous FeZrB(Cu) composite. Appl Phys Lett 99:232501

    Article  Google Scholar 

  24. Álvarez P, Gorria P, Llamazares JLS, Blanco JA (2013) Searching the conditions for a table-like shape of the magnetic entropy in magneto-caloric materials. J Alloys Compd 568:98–101

    Article  Google Scholar 

  25. Tian HC, Zhong XC, Liu ZW, Zheng ZG, Min JX (2015) Achieving table-like magnetocaloric effect and large refrigerant capacity around room temperature in Fe78− xCexSi4Nb5B12Cu1 (x = 0–10) composite materials. Mater Lett 138:64–66

    Article  Google Scholar 

  26. Lai JW, Zheng ZG, Zhong XC, Franco V, Montemayor R, Liu ZW, Zeng DC (2015) Table-like magnetocaloric effect of Fe88-x Nd x Cr8B4 composite materials. J Magn Magn Mater 390:87–90

    Article  Google Scholar 

  27. Franco V, Blázquez JS, Ingale B, Conde A (2012) The magnetocaloric effect and magnetic refrigeration near room temperature: materials and models. Annu Rev Mater Res 42:305–342

    Article  Google Scholar 

  28. Wang GF, Li HL, Zhao ZR, Zhang XF (2017) Stable magnetocaloric effect and refrigeration capacity in Co-doped FeCoMnZrNbB amorphous ribbons near room temperature. J Alloys Compd 692:793–796

    Article  Google Scholar 

  29. Álvarez P, Gorria P, Marcos JS, Barquín LF, Blanco JA (2010) The role of boron on the magneto-caloric effect of FeZrB metallic glasses. Intermetallics 18:2464–2467

    Article  Google Scholar 

  30. Mishra D, Gurram M, Reddy A, Perumal A, Saravanan P, Srinivasan A (2010) Enhanced soft magnetic properties and magnetocaloric effect in B substituted amorphous Fe-Zr alloy ribbons. Mater Sci Eng B 175:253–260

    Article  Google Scholar 

  31. Franco V, Blázquez JS, Conde A (2006) The influence of Co addition on the magnetocaloric effect of Nanoperm-type amorphous alloys. J Appl Phys 100:064307

    Article  Google Scholar 

  32. Gan LH, Ma LY, Tang BZ, Ding D, Xia L (2017) Effect of Co substitution on the glass forming ability and magnetocaloric effect of Fe88Zr8B4 amorphous alloys. Sci China Phys Mech Astro 60:076121

    Article  Google Scholar 

  33. Bloe JH, Amaral JS, Pereira AM, Amaral VS, Araujo JP (2012) On the Curie temperature dependency of the magnetocaloric effect. Appl Phys Lett 100:242407

    Article  Google Scholar 

  34. Franco V, Borrego JM, Conde CF, Conde A, Stoica M, Roth S (2006) Refrigerant capacity of FeCrMoCuGaPCB amorphous alloys. J Appl Phys 100:083903

    Article  Google Scholar 

  35. Franco V, Blázquez JS, Conde A (2006) Magnetocaloric response of Fe75Nb10B15Fe75Nb10B15 powders partially amorphized by ball milling. Appl Phys Lett 89:222512

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Nature Science Foundation of China (Grant Nos. 51271103 and 51671119), the Chongqing Research Program of Basic Research and Frontier Technology (Grant No. cstc2015jcyjBX0039), and the Foundation for the Creative Research Groups of Higher Education of Chongqing (No. CXTDX201601016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Xia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, P., Zhang, J.Z. & Xia, L. Effect of boron on the magneto-caloric effect in Fe91−x Zr9B x (x = 3, 4, 5) amorphous alloys. J Mater Sci 52, 13948–13955 (2017). https://doi.org/10.1007/s10853-017-1476-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1476-9

Keywords

Navigation