Skip to main content
Log in

Core–shell-structured Fe3O4/Pd@ZIF-8 catalyst with magnetic recyclability and size selectivity for the hydrogenation of alkenes

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The catalytic activity, recyclability and selectivity are the key issues resisting the noble metal nanocatalysts in the practical applications. In the present work, core–shell-structured Fe3O4/Pd@ZIF-8 catalyst was prepared by in situ coating Fe3O4/Pd microspheres with ZIF-8 shells. The catalyst structure was characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, nitrogen adsorption–desorption and X-ray photoelectron spectroscopy. The special catalyst structure which possesses the Fe3O4 cores, Pd nanoparticles and microporous ZIF-8 shells endowed the catalyst with magnetic recyclability, high catalytic activity and size selectivity for the hydrogenation of alkenes. It is believed that this study can provide a promising strategy to prepare core–shell-structured noble metal nanocatalysts with metal-framework shells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. McCue AJ, Guerrero-Ruiz A, Rodriguez-Ramos I, Anderson JA (2016) J Catal 340:10. doi:10.1016/j.jcat.2016.05.002

    Article  Google Scholar 

  2. Ding SS, Yan Q, Jiang H, Zhong ZX, Chen RZ, Xing WH (2016) Chem Eng J 296:146. doi:10.1016/j.cej.2016.03.098

    Article  Google Scholar 

  3. Lin L, Zhang T, Zhang XF, Liu HO, Yeung KL, Qiu JS (2014) Ind Eng Chem Res 53:10906. doi:10.1021/ie5013695

    Article  Google Scholar 

  4. Im J, Choi M (2016) ACS Catal 6:2819. doi:10.1021/acscatal.6b00329

    Article  Google Scholar 

  5. Kale MJ, Christopher P (2016) ACS Catal 6:5599. doi:10.1021/acscatal.6b01128

    Article  Google Scholar 

  6. Li Y, Ma CY, Yang HL et al (2016) Chem Eng J 299:1. doi:10.1016/j.cej.2016.04.040

    Article  Google Scholar 

  7. Wang F-R, Wang J-D, Sun H-P, Liu J-K, Yang X-H (2017) J Mater Sci 52:2495. doi:10.1007/s10853-016-0544-x

    Article  Google Scholar 

  8. Zhang Q, Lee I, Joo JB, Zaera F, Yin YD (2013) Acc Chem Res 46:1816. doi:10.1021/ar300230s

    Article  Google Scholar 

  9. Zaera F (2013) Chem Soc Rev 42:2746. doi:10.1039/c2cs35261c

    Article  Google Scholar 

  10. Zhang J, Kuang Q, Jiang Y, Xie Z (2016) Nano Today 11:661. doi:10.1016/j.nantod.2016.08.012

    Article  Google Scholar 

  11. Kim M, Kang H, Park KH (2015) Catal Commun 72:150. doi:10.1016/j.catcom.2015.09.032

    Article  Google Scholar 

  12. Arnal PM, Comotti M, Schuth F (2006) Angew Chem Int Ed Engl 45:8224. doi:10.1002/anie.200603507

    Article  Google Scholar 

  13. Kopinke FD, Angeles-Wedler D, Fritsch D, Mackenzie K (2010) Appl Catal B Environ 96:323. doi:10.1016/j.apcatb.2010.02.028

    Article  Google Scholar 

  14. Wang WY, Zhang K, Qiao ZQ, Li L, Liu PL, Yang YQ (2014) Ind Eng Chem Res 53:10301. doi:10.1021/ie500830f

    Article  Google Scholar 

  15. Bian S-W, Liu S, Chang L (2016) J Mater Sci 51:3643. doi:10.1007/s10853-015-9688-3

    Article  Google Scholar 

  16. Labulo AH, Martincigh BS, Omondi B, Nyamori VO (2017) J Mater Sci 52:9225. doi:10.1007/s10853-017-1128-0

    Article  Google Scholar 

  17. Kumar BS, Amali AJ, Pitchumani K (2015) ACS Appl Mater Interf 7:22907. doi:10.1021/acsami.5b08875

    Article  Google Scholar 

  18. Zhang T, Zhang XF, Yan XJ et al (2013) Chem Eng J 228:398. doi:10.1016/j.cej.2013.05.020

    Article  Google Scholar 

  19. Ke F, Wang LH, Zhu JF (2015) Nanoscale 7:1201. doi:10.1039/c4nr05421k

    Article  Google Scholar 

  20. Liu S, Guo M-X, Shao F, Peng Y-H, Bian S-W (2016) RSC Adv 6:76128. doi:10.1039/c6ra14374a

    Article  Google Scholar 

  21. Piao YZ, Jang YJ, Shokouhimehr M, Lee IS, Hyeon T (2007) Small 3:255. doi:10.1002/smll.200600402

    Article  Google Scholar 

  22. Lu G, Li SZ, Guo Z et al (2012) Nature Chem 4:310. doi:10.1038/nchem.1272

    Article  Google Scholar 

  23. Pu X, Li L, Liu M et al (2016) Adv Mater 28:98. doi:10.1002/adma.201504403

    Article  Google Scholar 

  24. Pang F, He MY, Ge JP (2015) Chem Eur J 21:6879. doi:10.1002/chem.201405921

    Article  Google Scholar 

  25. Xi BJ, Tan YC, Zeng HC (2016) Chem Mater 28:326. doi:10.1021/acs.chemmater.5b04147

    Article  Google Scholar 

  26. Sun XL, Guo SJ, Liu Y, Sun SH (2012) Nano Lett 12:4859. doi:10.1021/nl302358e

    Article  Google Scholar 

  27. Zhou W, Zou B, Zhang W, Tian D, Huang W, Huo F (2015) Nanoscale 7:8720. doi:10.1039/c4nr06567k

    Article  Google Scholar 

  28. Park KS, Ni Z, Cote AP et al (2006) PNAS 103:10186. doi:10.1073/pnas.0602439103

    Article  Google Scholar 

  29. Wang J, Wang H, Jiang J et al (2012) Cryst Growth Des 12:3499. doi:10.1021/cg300198r

    Article  Google Scholar 

  30. Lin L, Zhang T, Liu HO, Qiu JS, Zhang XF (2015) Nanoscale 7:7615. doi:10.1039/c5nr00257e

    Article  Google Scholar 

  31. Zhao YA, Liu MM, Fan BB et al (2014) Catal Commun 57:119. doi:10.1016/j.catcom.2014.08.015

    Article  Google Scholar 

  32. Cole-Hamilton DJ (2003) Science 299:1702. doi:10.1126/science.1081881

    Article  Google Scholar 

  33. Zhang Y, Xie Z, Wang Z, Feng X, Wang Y, Wu A (2016) Dalton Trans 45:12653. doi:10.1039/c6dt01827k

    Article  Google Scholar 

  34. Yang J, Zhao F, Zeng B (2016) RSC Adv 6:23403. doi:10.1039/c6ra00096g

    Article  Google Scholar 

  35. Tian FY, Cerro AM, Mosier AM et al (2014) J Phys Chem C 118:14449. doi:10.1021/jp5041053

    Article  Google Scholar 

  36. Li CX, Hu CG, Zhao Y et al (2014) Carbon 78:231. doi:10.1016/j.carbon.2014.06.076

    Article  Google Scholar 

  37. Boruah PK, Borthakur P, Darabdhara G et al (2016) RSC Adv 6:11049. doi:10.1039/c5ra25035h

    Article  Google Scholar 

  38. Wang J, Wang Y, Zhang Y et al (2016) ACS Appl Mater Interf 8:25508. doi:10.1021/acsami.6b06992

    Article  Google Scholar 

  39. Kuo CH, Tang Y, Chou LY et al (2012) J Am Chem Soc 134:14345. doi:10.1021/ja306869j

    Article  Google Scholar 

  40. Li Z, Yu R, Huang JL et al (2015) Nature Commun 6:8. doi:10.1038/ncomms9248

    Google Scholar 

  41. Zhang T, Li B, Zhang X, Qiu J, Han W, Yeung KL (2014) Microporous Mesoporous Mater 197:324. doi:10.1016/j.micromeso.2014.07.002

    Article  Google Scholar 

  42. Zhang T, Zhang X, Yan X et al (2014) Catal Today 236:41. doi:10.1016/j.cattod.2013.09.064

    Article  Google Scholar 

  43. Pachon LD, Rothenberg G (2008) Appl Organomet Chem 22:288. doi:10.1002/aoc.1382

    Article  Google Scholar 

  44. Yang QH, Xu Q, Yu SH, Jiang HL (2016) Angew Chem Int Ed 55:3685. doi:10.1002/anie.201510655

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51402048), DHU Distinguished Young Professor Program, the Fundamental Research Funds for the Central Universities and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry. The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shao-Wei Bian.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 417 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, P., Liu, S. & Bian, SW. Core–shell-structured Fe3O4/Pd@ZIF-8 catalyst with magnetic recyclability and size selectivity for the hydrogenation of alkenes. J Mater Sci 52, 12121–12130 (2017). https://doi.org/10.1007/s10853-017-1357-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1357-2

Keywords

Navigation