Skip to main content
Log in

Facile synthesis and characterization of pH-dependent pristine MgO nanostructures for visible light emission

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Herein, we demonstrate a strategy for facile synthesis of pristine MgO nanostructures at different pH values ranging from 7.9, 8.3 and 12.5 to explore their photoluminescence studies. These pH-dependent MgO nanostructures were characterized by various standard techniques such as XRD, SEM, EDS, TEM and photoluminescence (PL) spectroscopy. The obtained PL results clearly demonstrate that the PL emission spectra strongly depend upon growth environment. These nanostructures show a broad PL emission in visible region ranging from 400 to 680 nm at excitation wavelength of 330 nm. Hence, this study provides a unique feature to tailor the PL property of pristine MgO nanostructures which could be potentially used in luminescence harvesting for various optical display devices and sensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Roessler DM, Walker WC (1967) Electronic spectrum and ultraviolet optical properties of crystalline MgO. Phys Rev 159:733–738

    Article  Google Scholar 

  2. Jain N, Marwaha N, Verma R, Gupta BK, Srivastava AK (2016) Facile synthesis of defect-induced highly luminescent pristine MgO nanostructures for promising solid-state lighting applications. RSC Adv 6:4960–4968

    Article  Google Scholar 

  3. Suresh S (2014) Investigations on synthesis, structural and electrical properties of MgO nanoparticles by sol–gel method. J Ovonic Res 10:205–210

    Google Scholar 

  4. Florez E, Fuentealba P, Mondragon F (2008) Chemical reactivity of oxygen vacancies on the MgO surface: reactions with CO2, NO2 and metals. Catal Today 133:216–222

    Article  Google Scholar 

  5. Vu AT, Jiang S, Kim YH, Lee CH (2014) Controlling the physical properties of magnesium oxide using a calcination method in aerogel synthesis: its application to enhanced sorption of a sulfur compound. Ind Eng Chem Res 53:13228–13235

    Google Scholar 

  6. Uchino T, Okutsu D, Katayama R, Sawai S (2009) Mechanism of stimulated optical emission from MgO microcrystals with color centers. Phys Rev B Condens Mater Phys 79:165107-1–165107-8

    Google Scholar 

  7. Shao C, Guan H, Liu Y (2006) MgO nanofibres via an electrospinning technique. J Mater Sci 41:3821–3824. doi:10.1007/s10853-005-5623-3

    Article  Google Scholar 

  8. Taleshi F, Hosseini AA (2012) Synthesis of uniform MgO/CNT nanorods by precipitation method. J Nanostruct Chem 3:4

    Article  Google Scholar 

  9. Mageshwari K, Sathyamoorthy R (2012) Studies on photocatalytic performance of MgO nanoparticles prepared by wet chemical method. Trans Indian Inst Met 65:49–55

    Article  Google Scholar 

  10. Vinogradov AV, Vinogradov VV (2014) Low-temperature sol–gel synthesis of crystalline materials. RSC Adv 4:45903–45919

    Article  Google Scholar 

  11. Cui H, Wu X, Chen Y, Boughton RI (2014) Synthesis and characterization of mesoporous MgO by template-free hydrothermal method. Mater Res Bull 50:307–311

    Article  Google Scholar 

  12. Verma R, Naik KK, Gangwar J, Srivastava AK (2014) Morphology, mechanism and optical properties of nanometer-sized MgO synthesized via facile wet chemical method. Mater Chem Phys 148:1064–1070

    Article  Google Scholar 

  13. Sternig A, Stankic S, M¨uller M, Bernardi J, Knozinger E, Diwald O (2008) Photoluminescent nanoparticle surfaces: the potential of alkaline earth oxides for optical applications. Adv Mater 20:4840–4844

    Article  Google Scholar 

  14. Gangwar J, Gupta BK, Tripathi SK, Srivastava AK (2015) Phase dependent thermal and spectroscopic responses of different morphogenesis of Al2O3 nanostructures. Nanoscale 7:13313–13344

    Article  Google Scholar 

  15. Stankic S, Bernardi J, Diwald O, Zinger EK (2006) How anesthetics, neurotransmitters, and antibiotics influence the relaxation processes in lipid membranes. J Phys Chem B 110:13858–13866

    Article  Google Scholar 

  16. Remon A, Gagacia JA, Piquras J (1986) Red luminescence from deformed MgO crystals. J Phys Chem Solids 47:577–580

    Article  Google Scholar 

  17. Pikhitsa PV, Kim C, Chae S, Shin S, Jung S, Kitaura M, Kimura S, Fukui K, Choi M (2015) Two-band luminescence from an intrinsic defect in spherical and terraced MgO nanoparticles. Appl Phys Lett 106:183106

    Article  Google Scholar 

  18. Vingurt D, Fuks D, Landau MV, Vidrukb R, Herskowitz M (2013) Grain boundaries at the surface of consolidated MgO nanocrystals and acid–base, functionality. Phys Chem Chem Phys 15:14783–14796

    Article  Google Scholar 

  19. Ertekin E, Wagner LK, Grossman JC (2013) Point-defect optical transitions and thermal ionization energies from quantum Monte Carlo methods: application to the F-center defect in MgO. Phys Rev B 87:155210-1–155210-7

    Article  Google Scholar 

  20. Gerson AR, Bredow T (1999) MgO (100) Surface relaxation and vacancy defects: a semi-empirical quantum-chemical study. Phys Chem Chem Phys 1:4889–4896

    Article  Google Scholar 

  21. Yang H, Yang SH, Takahashi S, Maekawa S, Parkin SSP (2010) Extremely long quasiparticle spin lifetimes in superconducting aluminium using MgO tunnel spin injectors. Nat Mater 9:586–593

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Director, NPL New Delhi, India, for providing the necessary experimental facilities. Dr. Sushil Kumar, Dr. H. K Singh, Dr. Govind, Sh. Dinesh Singh and Sh. K. N. Sood are gratefully acknowledged for providing the necessary help and instrumentation facility for electron microscopy. The Project NanoSHE (BSC-0112) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avanish Kumar Srivastava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marwaha, N., Gupta, B.K., Verma, R. et al. Facile synthesis and characterization of pH-dependent pristine MgO nanostructures for visible light emission. J Mater Sci 52, 10480–10484 (2017). https://doi.org/10.1007/s10853-017-1231-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1231-2

Keywords

Navigation