Skip to main content
Log in

Reaction kinetic studies of metal-doped magnesium silicides

  • Mechanochemical Synthesis
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Metal-doped magnesium silicides are promising thermoelectric materials for waste heat recovery application at 500–800 K because of their low density, large natural availability, non-toxicity, good thermal stability, and transport properties. Reaction kinetics of metal-doped magnesium silicides, Mg2SiX m (X = Ti, Nb, Mn, and Co; m = 0.02, 0.04, and 0.08 mol) were investigated in this study. A simple and rapid synthesis of Mg2SiX m samples was carried out using pelletizing, and sintering method at 773–823 K for 300 s. The effect of metal doping on the lattice constants of Mg2SiX m samples was examined using X-ray diffraction technique. Differential thermal analysis heat flow experiments were conducted on (2Mg + Si + mX) sample mixtures to study the solid-state reaction kinetics of Mg2SiX m alloys formation at different scan rates of 0.08, 0.16, 0.25, 0.33 Ks−1. Activation energies for the formation reaction of Mg2Si were determined using Ozawa, and Kissinger–Akahira–Sunrose equations. A 3-D diffusion-controlled reaction mechanism was proposed based on Coats–Redfern (CR) model. The effect of concentration of the metal-dopants on the formation activation energies of Mg2SiX m was investigated using the CR equation plots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Seebeck TJ (1826) Ueber die magnetische Polarisation der metalle und erze durch temperaturdifferenz. Ann Phys 82:253–286

    Article  Google Scholar 

  2. Peltier JCA (1834) Nouvelles expériences sur la caloricité des courants électirique. Ann Chim Phys 56:371–386

    Google Scholar 

  3. Rosi FD (1968) Thermoelectricity and thermoelectric power generation. Solid State Electron 11:833–868

    Article  Google Scholar 

  4. Tritt TM, Böttner H, Chen L (2008) Thermoelectrics: direct solar thermal energy conversion. MRS Bull 33:366–368

    Article  Google Scholar 

  5. Minnich A, Dresselhaus MS, Ren ZF et al (2009) Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ Sci 2:466–479

    Article  Google Scholar 

  6. Snyder GJ, Toberer ES (2008) Complex thermoelectric materials. Nat Mater 7:105–114

    Article  Google Scholar 

  7. Rowe DM (2005) Thermoelectrics handbook: macro to nano, 1st edn. CRC Taylor & Francis, Boca Raton

    Book  Google Scholar 

  8. Lange H (1997) Electronic properties of semiconducting silicides. Phys Status Solidi B 201:3–65

    Article  Google Scholar 

  9. Ivanenko LI, Shaposhnikov VL, Filonov AB et al (2004) Electronic properties of semiconducting silicides: fundamentals and recent predictions. Thin Solid Films 461:141–147

    Article  Google Scholar 

  10. Nikitin EN (1958) Study of temperature dependencies of electrical conductivity and thermal power of silicides. Zhur Tekhn Fiz 28:23

    Google Scholar 

  11. Fedorov MI, Zaitsev VK (2008) The features of silicide thermoelectrics development. In: 6th European conference on thermoelectrics (ECT2008), I-11:1–6

  12. Fedorov MI (2009) Thermoelectric silicides: past, present and future. J Thermoelectr 2:51–60

    Google Scholar 

  13. Fedorov MI, Isachenko GN (2015) Silicides: materials for thermoelectric energy conversion. Jpn J Appl Phys 54(07JA05):1–6

    Google Scholar 

  14. Bogala MR, Reddy RG (2015) Phase stability of thermoelectric alkaline earth metal borides and silicides. In: The Minerals, Metals & Materials Society (eds) TMS 2015 144th Annual Meeting & Exhibition. Springer, Cham

  15. Bogala MR, Reddy RG (2016) Synthesis, characterization and Gibbs energy of thermoelectric Mg2Si. Ceram Trans 259:143–152

    Google Scholar 

  16. Bux SK, Yeung MT, Toberer ES et al (2011) Mechanochemical synthesis and thermoelectric properties of high quality magnesium silicide. J Mater Chem 21:12259–12266

    Article  Google Scholar 

  17. Villars P (2014) Springer & Material Phases Data System (MPDS). http://materials.springer.com/isp/crystallographic/docs/sd_0531570. Accessed 22 Oct 2014

  18. Wang L, Qin XY (2003) The effect of mechanical milling on the formation of nanocrystalline Mg2Si through solid-state reaction. Scr Mater 49:243–248

    Article  Google Scholar 

  19. Bale CW, Bélisle E, Chartrand P et al (2009) FactSage thermochemical software and databases—recent developments. http://www.factsage.com/. Accessed 16 May 2015

  20. Jain A, Ong SP, Hautier G et al (2013) The materials project: a materials genome approach to accelerating materials innovation. https://materialsproject.org/materials/mp-1367/. Accessed 28 June 2015

  21. Lee HJ, Cho YR, Kim I (2011) Synthesis of thermoelectric Mg2Si by a solid state reaction. J Ceram Process Res 12:16–20

    Google Scholar 

  22. Tani J, Kido H (2005) Thermoelectric properties of Bi-doped Mg2Si semiconductors. Phys B Condens Matter 364:218–224

    Article  Google Scholar 

  23. You S, Park K, Kim I et al (2012) Solid-state synthesis and thermoelectric properties of Al-doped Mg2Si. J Electron Mater 41:1675–1679

    Article  Google Scholar 

  24. Tani J, Kido H (2007) Thermoelectric properties of Sb-doped Mg2Si semiconductors. Intermetallics 15:1202–1207

    Article  Google Scholar 

  25. Fan W, Chen R, Wang L et al (2011) First-principles and experimental studies of Y-doped Mg2Si prepared using field-activated pressure-assisted synthesis. J Electron Mater 40:1209–1214

    Article  Google Scholar 

  26. Akasaka M, Iida T, Matsumoto A et al (2008) The thermoelectric properties of bulk crystalline n-and p-type Mg2Si prepared by the vertical Bridgman method. J Appl Phys 104:013703

    Article  Google Scholar 

  27. Bercegol A, Christophe V, Keshavarz MK et al (2016) Hot extruded polycrystalline Mg2Si with embedded XS2 nano-particles (X: Mo, W). J Electron Mater. doi:10.1007/s11664-016-4868-8

    Google Scholar 

  28. Satyala N, Krasinski JS, Vashaee D (2014) Simultaneous enhancement of mechanical and thermoelectric properties of polycrystalline magnesium silicide with conductive glass inclusion. Acta Mater 74:141–150

    Article  Google Scholar 

  29. Fiameni S, Battiston S, Boldrini S et al (2012) Synthesis and characterization of Bi-doped Mg2Si thermoelectric materials. J Solid State Chem 193:142–146

    Article  Google Scholar 

  30. You S, Kim I (2011) Solid-state synthesis and thermoelectric properties of Bi-doped Mg2Si compounds. Curr Appl Phys 11:S392–S395

    Article  Google Scholar 

  31. Battiston S, Fiameni S, Saleemi M et al (2013) Synthesis and characterization of Al-doped Mg2Si thermoelectric materials. J Electron Mater 42:1956–1959

    Article  Google Scholar 

  32. Ioannou M, Polymeris G, Hatzikraniotis E et al (2013) Solid-state synthesis and thermoelectric properties of Sb-doped Mg2Si materials. J Electron Mater 42:1827–1834

    Article  Google Scholar 

  33. Zaitsev VK, Fedorov MI, Gurieva EA et al (2006) Highly effective Mg2Si1−x Sn x thermoelectrics. Phys Rev B 74(045207):1–5

    Google Scholar 

  34. Jiang H, Long H, Zhang L (2004) Effects of solid-state reaction synthesis processing parameters on thermoelectric properties of Mg2Si. J Wuhan Univ Technol Mater Sci Ed 19:55–56

    Article  Google Scholar 

  35. Khajelakzay M, Bakhshi SR, Borhani GH et al (2016) Synthesis and spark plasma sintering of Mg2Si nanopowder by mechanical alloying and heat treatment. Int J Appl Ceram Technol 13:498–505

    Article  Google Scholar 

  36. Ito M, Kawahara K (2015) Synthesis of thermoelectric Mg2Si by reactive sintering utilizing directly applied current sintering. Mater Trans 56:2023–2028

    Article  Google Scholar 

  37. Meng QS, Fan WH, Chen RX et al (2011) Thermoelectric properties of Sc-and Y-doped Mg2Si prepared by field-activated and pressure-assisted reactive sintering. J Alloys Compd 509:7922–7926

    Article  Google Scholar 

  38. Yoshinaga M, Iida T, Noda M et al (2004) Bulk crystal growth of Mg2Si by the vertical Bridgman method. Thin Solid Films 461:86–89

    Article  Google Scholar 

  39. Fu G, Zuo L, Longtin J et al (2013) Thermoelectric properties of magnesium silicide fabricated using vacuum plasma thermal spray. J Appl Phys 114(144905):1–6

    Google Scholar 

  40. Berthebaud D, Gascoin F (2013) Microwaved assisted fast synthesis of n and p-doped Mg2Si. J Solid State Chem 202:61–64

    Article  Google Scholar 

  41. Niu X, Lu L (1997) Formation of magnesium silicide by mechanical alloying. Adv Perform Mater 4:275–283

    Article  Google Scholar 

  42. Horvitz D, Klinger L, Gotman I (2004) New approach to measuring the activation energy of thermal explosion and its application to Mg–Si system. Scr Mater 50:631–634

    Article  Google Scholar 

  43. Sun B, Li S, Imai H et al (2012) Synthesis kinetics of Mg2Si and solid-state formation of Mg–Mg2Si composite. Powder Technol 217:157–162

    Article  Google Scholar 

  44. Ozawa T (1970) Kinetic analysis of derivative curves in thermal analysis. J Therm Anal Calorim 2:301–324

    Article  Google Scholar 

  45. Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29:1702–1706

    Article  Google Scholar 

  46. Coats AW, Redfern JP (1964) Kinetic parameters from thermogravimetric data. Nature 201:68–69

    Article  Google Scholar 

  47. Ioannou M, Chrissafis K, Pavlidou E et al (2013) Solid-state synthesis of Mg2Si via short-duration ball-milling and low-temperature annealing. J Solid State Chem 197:172–180

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the National Science Foundation (NSF) agency for the financial support from the Grant No. DMR-1310072, American Cast Iron Pipe Company (ACIPCO), and Department of Metallurgical and Materials Engineering (MTE) at the University of Alabama for providing the central analytical facilities to complete the present research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramana G. Reddy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest associated with the studies mentioned in the current research article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 257 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogala, M.R., Reddy, R.G. Reaction kinetic studies of metal-doped magnesium silicides. J Mater Sci 52, 11962–11976 (2017). https://doi.org/10.1007/s10853-017-1095-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1095-5

Keywords

Navigation