Skip to main content

Advertisement

Log in

3D hierarchical and porous layered double hydroxide structures: an overview of synthesis methods and applications

  • Macroporous Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nanostructured layered double hydroxide (LDH) materials with unique diffusion properties, large surface area along with desired functionalities have recently been produced for a number of well-established and advanced fields of applications. In this review, we describe and discuss the main synthetic methods that have been reported for the fabrication of porous LDH with tailored chemical composition and porosity. The efficiency of soft and hard templating approaches is particularly reviewed. A special emphasis is put on the microstructure and porosity of the materials according to the synthetic method involved. Finally, the performance enhancement of the materials due to the presence of porosity, especially macroporosity, in applications such as pollutant removal, catalysis and energy storage and conversion is overviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1

Reproduced from Ref. [32] with permission from The Royal Society of Chemistry

Figure 2

Reproduced from Ref. [61] with permission from The Royal Society of Chemistry

Figure 3

Adapted with permission from [20] Copyright (2016) American Chemical Society

Figure 4
Figure 5

Adapted with permission from [72]. Copyright (2016) American Chemical Society. Reprinted from [74, 75], Copyright (2016), with permission from Elsevier. Reprinted from [73], Copyright (2016), with permission from John Wiley and Sons

Figure 6

Reproduced from Ref. [132] with permission from The Royal Society of Chemistry. Adapted with permission from [126, 139, 142] Copyright (2016) American Chemical Society

Similar content being viewed by others

References

  1. Costantino U, Leroux F, Nocchetti M, Mousty C (2013) LDH in physical, chemical, bio-chemical and life science, Chapter 6. In: Faiza Bergaya GLE (ed) Handbook of clay science, vol 765. Elsevier, Amsterdam, pp 765–791. Techniques and Applications

  2. Forano C, Costantino U, Prevot V, Taviot Gueho C (2013) Layered double hydroxides. In: Faiza Bergaya GL (ed) Handbook of clay science, vol 5, Part A. Elsevier, Amsterdam, pp 745–783. doi: 10.1016/B978-0-08-098258-8.00025-0

  3. Duan X, Evans DG (eds) (2006) Layered double hydroxides, Struct. Bonding, 119. Springer, Berlin/Heidelberg

  4. Rives V (2001) Layered double hydroxides: present and future. Nova Science, New York

    Google Scholar 

  5. Costa DG, Rocha AB, Diniz R, Souza WF, Chiaro SS, Leitao AA (2010) Structural model proposition and thermodynamic and vibrational analysis of hydrotalcite-like compounds by dft calculations. J Phys Chem C 114:14133–14140. doi:10.1021/jp1033646

    Article  Google Scholar 

  6. Wang Q, O’Hare D (2012) Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem Rev 112(7):4124–4155. doi:10.1021/cr200434v

    Article  Google Scholar 

  7. Gu Z, Atherton JJ, Xu ZP (2015) Hierarchical layered double hydroxide nanocomposites: structure, synthesis and applications. Chem Commun 51(15):3024–3036. doi:10.1039/c4cc07715f

    Article  Google Scholar 

  8. Carja G, Nakamura R, Aida T, Niiyama H (2001) Textural properties of layered double hydroxides: effect of magnesium substitution by copper or iron. Microporous Mesoporous Mater 47(2–3):275–284. doi:10.1016/S1387-1811(01)00387-0

    Article  Google Scholar 

  9. Ni X, Kuang K, Jin X, Xiao X, Liao G (2010) Large scale synthesis of porous microspheres of Mg–Al-layerd double hydroxide with improved fire suppression effectiveness. Solid State Sci 12(4):546–551. doi:10.1016/j.solidstatesciences.2010.01.003

    Article  Google Scholar 

  10. Xiao T, Tang Y, Jia Z, Li D, Hu X, Li B, Luo L (2009) Self-assembled 3D flower-like Ni2+–Fe3+ layered double hydroxides and their calcined products. Nanotechnology 20 (47):475603-1–475603-7. doi:10.1088/0957-4484/20/47/475603

    Article  Google Scholar 

  11. Gu TH, Gunjakar JL, Kim IY, Patil SB, Lee JM, Jin X, Lee NS, Hwang SJ (2015) Porous hybrid network of graphene and metal oxide nanosheets as useful matrix for improving the electrode performance of layered double hydroxides. Small 11(32):3921–3931. doi:10.1002/smll.201500286

    Article  Google Scholar 

  12. Song Y, Wang J, Li Z, Guan D, Mann T, Liu Q, Zhang M, Liu L (2012) Self-assembled hierarchical porous layered double hydroxides by solvothermal method and their application for capacitors. Microporous Mesoporous Mater 148(1):159–165. doi:10.1016/j.micromeso.2011.08.013

    Article  Google Scholar 

  13. Li S, Mo S, Li J, Liu H, Chen Y (2016) Promoted VOC oxidation over homogeneous porous CoxNiAlO composite oxides derived from hydrotalcites: effect of preparation method and doping. RSC Adv 6(62):56874–56884. doi:10.1039/c6ra08394c

    Article  Google Scholar 

  14. Zhou J, Cheng Y, Yu J, Liu G (2011) Hierarchically porous calcined lithium/aluminum layered double hydroxides: facile synthesis and enhanced adsorption towards fluoride in water. J Mater Chem 21(48):19353–19361. doi:10.1039/c1jm13645c

    Article  Google Scholar 

  15. Li Z, Yang B, Zhang S, Wang B, Xue B (2014) A novel approach to hierarchical sphere-like ZnAl-layered double hydroxides and their enhanced adsorption capability. J Mater Chem A 2(26):10202–10210. doi:10.1039/c4ta01028k

    Article  Google Scholar 

  16. Chen L, Li C, Wei Y, Zhou G, Pan A, Wei W, Huang B (2016) Hollow LDH nanowires as excellent adsorbents for organic dye. J Alloys Compd 687:499–505. doi:10.1016/j.jallcom.2016.05.344

    Article  Google Scholar 

  17. Zhou J, Yang S, Yu J, Shu Z (2011) Novel hollow microspheres of hierarchical zinc-aluminum layered double hydroxides and their enhanced adsorption capacity for phosphate in water. J Hazard Mater 192(3):1114–1121. doi:10.1016/j.jhazmat.2011.06.013

    Article  Google Scholar 

  18. Faour A, Mousty C, Prevot V, Devouard B, De Roy A, Bordet P, Elkaim E, Taviot-Gueho C (2012) Correlation among structure, microstructure, and electrochemical properties of NiAlCO3 layered double hydroxide thin films. J Phys Chem C 116(29):15646–15659. doi:10.1021/jp300780w

    Article  Google Scholar 

  19. Prevot V, Caperra N, Taviot-Gueho C, Forano C (2009) Glycine-assisted hydrothermal synthesis of NiAl-layered double hydroxide nanostructures. Cryst Growth Des 9(8):3646–4654

    Article  Google Scholar 

  20. Tokudome Y, Morimoto T, Tarutani N, Vaz PD, Nunes CD, Prevot V, Stenning GBG, Takahashi M (2016) Layered double hydroxide nanoclusters: aqueous, concentrated, stable, and catalytically active colloids toward green chemistry. ACS Nano 10(5):5550–5559. doi:10.1021/acsnano.6b02110

    Article  Google Scholar 

  21. Tarutani N, Tokudome Y, Jobbágy M, Viva FA, Soler-Illia GJAA, Takahashi M (2016) Single-nanometer-sized low-valence metal hydroxide crystals: synthesis via epoxide-mediated alkalinization and assembly toward functional mesoporous materials. Chem Mater 28(16):5606–5610. doi:10.1021/acs.chemmater.6b02510

    Article  Google Scholar 

  22. Liu J, Li Y, Huang X, Li G, Li Z (2008) Layered double hydroxide nano- and microstructures grown directly on metal substrates and their calcined products for application as Li-ion battery electrodes. Adv Funct Mater 18(9):1448–1458

    Article  Google Scholar 

  23. Zhang L, Wang J, Zhu J, Zhang X, San Hui K, Hui KN (2013) 3D porous layered double hydroxides grown on graphene as advanced electrochemical pseudocapacitor materials. J Mater Chem A 1(32):9046–9053. doi:10.1039/c3ta11755c

    Article  Google Scholar 

  24. Chen H, Zhang F, Fu S, Duan X (2006) In situ microstructure control of oriented layered double hydroxide monolayer films with curved hexagonal crystals as superhydrophobic materials. Adv Mater 18(23):3089–3093. doi:10.1002/adma.200600615

    Article  Google Scholar 

  25. Han J, Dou Y, Zhao J, Wei M, Evans DG, Duan X (2013) Flexible CoAl LDH@PEDOT core/shell nanoplatelet array for high-performance energy storage. Small 9(1):98–106. doi:10.1002/smll.201201336

    Article  Google Scholar 

  26. Wang M, Bao W-J, Wang J, Wang K, Xu J-J, Chen H-Y, Xia X-H (2014) A green approach to the synthesis of novel Desert rose stone-like nanobiocatalytic system with excellent enzyme activity and stability. Sci Rep 4:1–8

    Google Scholar 

  27. Wang Y, Dou H, Wang J, Ding B, Xu Y, Chang Z, Hao X (2016) Three-dimensional porous MXene/layered double hydroxide composite for high performance supercapacitors. J Power Sources 327:221–228. doi:10.1016/j.jpowsour.2016.07.062

    Article  Google Scholar 

  28. Huang S, Zhu G-N, Zhang C, Tjiu WW, Xia Y-Y, Liu T (2012) Immobilization of CoAl layered double hydroxides on graphene oxide nanosheets: growth mechanism and supercapacitor studies. ACS Appl Mater Interfaces 4(4):2242–2249. doi:10.1021/am300247x

    Article  Google Scholar 

  29. Guo X, Xu S, Zhao L, Lu W, Zhang F, Evans DG, Duan X (2009) One-step hydrothermal crystallization of a layered double hydroxide/alumina bilayer film on aluminum and its corrosion resistance properties. Langmuir 25(17):9894–9897. doi:10.1021/la901012w

    Article  Google Scholar 

  30. Yue CL, Chen HY, Xu SL, Zhang FZ (2012) Controlled synthesis and investigation of the mechanism of formation of hollow hemispherical protrusions on laurate anion-intercalated Zn/Al layered double hydroxide hybrid films. J Colloid Interface Sci 385:268–273. doi:10.1016/j.jcis.2012.06.008

    Article  Google Scholar 

  31. Chen CP, Wangriya A, Buffet JC, O’Hare D (2015) Tuneable ultra high specific surface area Mg/Al-CO3 layered double hydroxides. Dalton T 44(37):16392–16398. doi:10.1039/c5dt02641e

    Article  Google Scholar 

  32. Wang Q, O’Hare D (2013) Large-scale synthesis of highly dispersed layered double hydroxide powders containing delaminated single layer nanosheets. Chem Commun 49(56):6301–6303. doi:10.1039/c3cc42918k

    Article  Google Scholar 

  33. Gunjakar JL, Kim IY, Hwang SJ (2015) Efficient hybrid-type CO2 adsorbents of reassembled layered double hydroxide 2D nanosheets with polyoxometalate 0D nanoclusters. Eur J Inorg Chem 7:1198–1202. doi:10.1002/ejic.201402480

    Article  Google Scholar 

  34. Huang S, Peng HD, Tjiu WW, Yang Z, Zhu H, Tang T, Liu TX (2010) Assembling exfoliated layered double hydroxide (LDH) nanosheet/carbon nanotube (CNT) hybrids via electrostatic force and fabricating nylon nanocomposites. J Phys Chem B 114(50):16766–16772. doi:10.1021/Jp1087256

    Article  Google Scholar 

  35. Liu M, Wang T, Ma H, Fu Y, Hu K, Guan C (2014) Assembly of luminescent ordered multilayer thin-films based on oppositely-charged MMT and magnetic NiFe-LDHs nanosheets with ultra-long lifetimes. Sci Rep 4:1–9. doi:10.1038/srep07147

    Google Scholar 

  36. Liu ZP, Ma RZ, Osada M, Iyi N, Ebina Y, Takada K, Sasaki T (2006) Synthesis, anion exchange, and delamination of Co–Al layered double hydroxide: assembly of the exfoliated nanosheet/polyanion composite films and magneto-optical studies. J Am Chem Soc 128(14):4872–4880. doi:10.1021/Ja0584471

    Article  Google Scholar 

  37. Osada M, Ebina Y, Takada K, Sasaki T (2006) Gigantic magneto-optical effects in multilayer assemblies of two-dimensional titania nanosheets. Adv Mater 18(3):295–299. doi:10.1002/adma.200501810

    Article  Google Scholar 

  38. Woo MA, Song MS, Kim TW, Kim IY, Ju JY, Lee YS, Kim SJ, Choy JH, Hwang SJ (2011) Mixed valence Zn–Co-layered double hydroxides and their exfoliated nanosheets with electrode functionality. J Mater Chem 21(12):4286–4292. doi:10.1039/c0jm03430d

    Article  Google Scholar 

  39. Prevot V, Forano C, Besse JP (2005) Hydrolysis in polyol: new route for hybrid-layered double hydroxides preparation. Chem Mater 17(26):6695–6701

    Article  Google Scholar 

  40. Zhao Y, Li F, Zhang R, Evans DG, Duan X (2002) Preparation of layered double-hydroxide nanomaterials with a uniform crystallite size using a new method involving separate nucleation and aging steps. Chem Mater 14(10):4286–4291

    Article  Google Scholar 

  41. Prevot V, Szczepaniak C, Jaber M (2011) Aerosol-assisted self-assembly of hybrid layered double hydroxide particles into spherical architectures. J Colloid Interface Sci 356(2):566–572. doi:10.1016/j.jcis.2011.01.051

    Article  Google Scholar 

  42. Wang Y, Zhang F, Xu S, Wang X, Evans DG, Duan X (2008) Preparation of layered double hydroxide microspheres by spray drying. Ind Eng Chem Res 47(15):5746–5750. doi:10.1021/ie800146m

    Article  Google Scholar 

  43. Huo R, Kuang Y, Zhao Z, Zhang F, Xu S (2013) Enhanced photocatalytic performances of hierarchical ZnO/ZnAl2O4 microsphere derived from layered double hydroxide precursor spray-dried microsphere. J Colloid Interface Sci 407:17–21. doi:10.1016/j.jcis.2013.06.067

    Article  Google Scholar 

  44. Shi J-L, Peng H-J, Zhu L, Zhu W, Zhang Q (2015) Template growth of porous graphene microspheres on layered double oxide catalysts and their applications in lithium sulfur batteries. Carbon 92:96–105. doi:10.1016/j.carbon.2015.03.031

    Article  Google Scholar 

  45. Pierre AC, Pajonk GM (2002) Chemistry of aerogels and their applications. Chem Rev 102:4243–4265

    Article  Google Scholar 

  46. Tokudome Y, Fukui M, Tarutani N, Nishimura S, Prevot V, Forano C, Poologasundarampillai G, Lee PD, Takahashi M (2016) High-density protein loading on hierarchically porous layered double hydroxide composites with a rational mesostructure. Langmuir 32(35):8826–8833. doi:10.1021/acs.langmuir.6b01925

    Article  Google Scholar 

  47. Touati S, Mansouri H, Bengueddach A, de Roy A, Forano C, Prevot V (2012) Nanostructured layered double hydroxide aerogels with enhanced adsorption properties. Chem Commun 48(57):7197–7199. doi:10.1039/C2cc31817b

    Article  Google Scholar 

  48. Hu Z, Chen G (2014) Novel nanocomposite hydrogels consisting of layered double hydroxide with ultrahigh tensibility and hierarchical porous structure at low inorganic content. Adv Mater 26(34):5950–5956. doi:10.1002/adma.201400179

    Article  Google Scholar 

  49. Shafiei SS, Shavandi M, Ahangari G, Shokrolahi F (2016) Electrospun layered double hydroxide/poly (ε-caprolactone) nanocomposite scaffolds for adipogenic differentiation of adipose-derived mesenchymal stem cells. Appl Clay Sci 127–128:52–63. doi:10.1016/j.clay.2016.04.004

    Article  Google Scholar 

  50. Gomez-Fernandez S, Ugarte L, Pena-Rodriguez C, Zubitur M, Corcuera MA, Eceiza A (2016) Flexible polyurethane foam nanocomposites with modified layered double hydroxides. Appl Clay Sci 123:109–120. doi:10.1016/j.clay.2016.01.015

    Article  Google Scholar 

  51. Martinez AB, Realinho V, Antunes M, Maspoch ML, Velasco JI (2011) Microcellular foaming of layered double hydroxide polymer nanocomposites. Ind Eng Chem Res 50(9):5239–5247. doi:10.1021/ie101375f

    Article  Google Scholar 

  52. Zhang A, Wang C, Xu Q, Liu H, Wang Y, Xia Y (2015) A hybrid aerogel of Co–Al layered double hydroxide/graphene with three-dimensional porous structure as a novel electrode material for supercapacitors. RSC Adv 5(33):26017–26026. doi:10.1039/c5ra00103j

    Article  Google Scholar 

  53. Soler-Illia GJDAA, Sanchez C, Lebeau B, Patarin J (2002) Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chem Rev 102(11):4093–4138. doi:10.1021/cr0200062

    Article  Google Scholar 

  54. Torchilin VP (2007) Micellar nanocarriers: pharmaceutical perspectives. Pharm Res 24(1):1–16. doi:10.1007/s11095-006-9132-0

    Article  Google Scholar 

  55. Wong MS, Jeng ES, Ying JY (2001) Supramolecular templating of thermally stable crystalline mesoporous metal oxides using nanoparticulate precursors. Nano Lett 1(11):637–642. doi:10.1021/nl015594y

    Article  Google Scholar 

  56. Chane-Ching JY, Cobo F, Aubert D, Harvey HG, Airiau M, Corma A (2005) A general method for the synthesis of nanostructured large-surface-area materials through the self-assembly of functionalized nanoparticles. Chem - A Eur J 11(3):979–987. doi:10.1002/chem.200400535

    Article  Google Scholar 

  57. Inagaki S, Guan S, Ohsuna T, Terasaki O (2002) An ordered mesoporous organosilica hybrid material with a crystal-like wall structure. Nature 416(6878):304–307. doi:10.1038/416304a

    Article  Google Scholar 

  58. Choi M, Cho HS, Srivastava R, Venkatesan C, Choi DH, Ryoo R (2006) Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity. Nat Mater 5(9):718–723. doi:10.1038/nmat1705

    Article  Google Scholar 

  59. Wu Z, Li Q, Feng D, Webley PA, Zhao D (2010) Ordered mesoporous crystalline γ-Al2O3 with variable architecture and porosity from a single hard template. J Am Chem Soc 132(34):12042–12050. doi:10.1021/ja104379a

    Article  Google Scholar 

  60. Tang J, Wu Y, McFarland EW, Stucky GD (2004) Synthesis and photocatalytic properties of highly crystalline and ordered mesoporous TiO2 thin films. Chem Commun 10(14):1670–1671

    Article  Google Scholar 

  61. Gunawan P, Xu R (2008) Synthesis of unusual coral-like layered double hydroxide microspheres in a nonaqueous polar solvent/surfactant system. J Mater Chem 18(18):2112–2120. doi:10.1039/b719817e

    Article  Google Scholar 

  62. Zhang J, Xie X, Li C, Wang H, Wang L (2015) The role of soft colloidal templates in the shape evolution of flower-like MgAl-LDH hierarchical microstructures. RSC Adv 5(38):29757–29765. doi:10.1039/c5ra01561h

    Article  Google Scholar 

  63. Sun H, Chu Z, Hong D, Zhang G, Xie Y, Li L, Shi K (2016) Three-dimensional hierarchical flower-like Mg–Al-layered double hydroxides: fabrication, characterization and enhanced sensing properties to NOx at room temperature. J Alloys Compd 658:561–568. doi:10.1016/j.jallcom.2015.10.237

    Article  Google Scholar 

  64. Shao M, Ning F, Zhao J, Wei M, Evans DG, Duan X (2013) Hierarchical layered double hydroxide microspheres with largely enhanced performance for ethanol electrooxidation. Adv Funct Mater 23(28):3513–3518. doi:10.1002/adfm.201202825

    Article  Google Scholar 

  65. Wu X, Jiang L, Long C, Wei T, Fan Z (2015) Dual support system ensuring porous Co–Al hydroxide nanosheets with ultrahigh rate performance and high energy density for supercapacitors. Adv Funct Mater 25(11):1648–1655. doi:10.1002/adfm.201404142

    Article  Google Scholar 

  66. Oestreicher V, Jobbagy M (2013) One pot synthesis of Mg2Al(OH)6Cl·1.5H2O layered double hydroxides: the epoxide route. Langmuir 29(39):12104–12109. doi:10.1021/La402260m

    Article  Google Scholar 

  67. Gash AE, Tillotson TM, Satcher JH, Poco JF, Hrubesh LW, Simpson RL (2001) Use of epoxides in the sol-gel synthesis of porous iron(III) oxide monoliths from Fe(III) salts. Chem Mater 13(3):999–1007. doi:10.1021/Cm0007611

    Article  Google Scholar 

  68. Tokudome Y, Fujita K, Nakanishi K, Miura K, Hirao K (2007) Synthesis of monolithic Al2O3 with well-defined macropores and mesostructured skeletons via the sol–gel process accompanied by phase separation. Chem Mater 19:3393–3398. doi:10.1021/cm063051p

    Article  Google Scholar 

  69. Tokudome Y, Tarutani N, Nakanishi K, Takahashi M (2013) Layered double hydroxide (LDH)-based monolith with interconnected hierarchical channels: enhanced sorption affinity for anionic species. J Mater Chem A 1(26):7702–7708. doi:10.1039/C3ta11110e

    Article  Google Scholar 

  70. Tarutani N, Tokudome Y, Fukui M, Nakanishi K, Takahashi M (2015) Fabrication of hierarchically porous monolithic layered double hydroxide composites with tunable microcages for effective oxyanion adsorption. RSC Adv 5(70):57187–57192. doi:10.1039/c5ra05942a

    Article  Google Scholar 

  71. Han J, Dou Y, Wei M, Evans DG, Duan X (2010) Erasable nanoporous antireflection coatings based on the reconstruction effect of layered double hydroxides. Angew Chem Int Ed 49(12):2171–2174. doi:10.1002/anie.200907005

    Article  Google Scholar 

  72. Jiang S-D, Song L, Zeng W-R, Huang Z-Q, Zhan J, Stec AA, Hull TR, Hu Y, Hu W-Z (2015) Self-assembly fabrication of hollow mesoporous silica@CoAl layered double hydroxide@ graphene and application in toxic effluents elimination. ACS Appl Mater Interfaces 7(16):8506–8514. doi:10.1021/acsami.5b00176

    Article  Google Scholar 

  73. Yan Q, Zhang Z, Zhang Y, Umar A, Guo Z, O’Hare D, Wang Q (2015) Hierarchical Fe3O4 core–shell layered double hydroxide composites as magnetic adsorbents for anionic dye removal from wastewater. Eur J Inorg Chem 25:4182–4191. doi:10.1002/ejic.201500650

    Article  Google Scholar 

  74. Basile F, Benito P, Fornasari G, Rosetti V, Scavetta E, Tonelli D, Vaccari A (2009) Electrochemical synthesis of novel structured catalysts for H2 production. Appl Catal B 91(1–2):563–572. doi:10.1016/j.apcatb.2009.06.028

    Article  Google Scholar 

  75. Lai F, Huang Y, Miao Y-E, Liu T (2015) Controllable preparation of multi-dimensional hybrid materials of nickel-cobalt layered double hydroxide nanorods/nanosheets on electrospun carbon nanofibers for high-performance supercapacitors. Electrochim Acta 174:456–463. doi:10.1016/j.electacta.2015.06.031

    Article  Google Scholar 

  76. Abushrenta N, Wu X, Wang J, Liu J, Sun X (2015) Hierarchical Co-based porous layered double hydroxide arrays derived via alkali etching for high-performance supercapacitors. Sci Rep 5:1–9. doi:10.1038/srep13082

    Article  Google Scholar 

  77. Xie R, Fan G, Yang L, Li F (2016) Hierarchical flower-like Co-Cu mixed metal oxide microspheres as highly efficient catalysts for selective oxidation of ethylbenzene. Chem Eng J 288:169–178. doi:10.1016/j.cej.2015.12.004

    Article  Google Scholar 

  78. Zhang F, Chen J, Chen P, Sun Z, Xu S (2012) Pd nanoparticles supported on hydrotalcite-modified porous alumina spheres as selective hydrogenation catalyst. AIChE J 58(6):1853–1861. doi:10.1002/aic.12694

    Article  Google Scholar 

  79. Liu M, He S, Miao Y-E, Huang Y, Lu H, Zhang L, Liu T (2015) Eco-friendly synthesis of hierarchical ginkgo-derived carbon nanoparticles/NiAl-layered double hydroxide hybrid electrodes toward high-performance supercapacitors. RSC Adv 5(68):55109–55118. doi:10.1039/c5ra07215h

    Article  Google Scholar 

  80. Zhang T, Mei ZY, Zhou YM, Yu SN, Chen ZJ, Bu XH (2014) Novel paper-templated fabrication of hierarchically porous Ni–Al layered double hydroxides/Al2O3 for efficient BSA separation. J Chem Technol Biotechnol 89(11):1705–1711. doi:10.1002/Jctb.4248

    Article  Google Scholar 

  81. Zhang T, Zhou Y, He M, Bu X, Wang Y, Zhang C (2015) Templated fabrication of biomorphic alumina-based ceramics with hierarchical structure. J Eur Ceram Soc 35(4):1337–1341. doi:10.1016/j.jeurceramsoc.2014.10.029

    Article  Google Scholar 

  82. Jia Z, Wang Y, Qi T (2015) Hierarchical Ni–Fe layered double hydroxide/MnO2 sphere architecture as an efficient noble metal-free electrocatalyst for ethanol electro-oxidation in alkaline solution. RSC Adv 5(101):83314–83319. doi:10.1039/c5ra15718h

    Article  Google Scholar 

  83. Zhang H, Zhang G, Bi X, Chen X (2013) Facile assembly of a hierarchical core@shell Fe3O4@CuMgAl-LDH (layered double hydroxide) magnetic nanocatalyst for the hydroxylation of phenol. J Mater Chem A 1(19):5934–5942. doi:10.1039/c3ta10349h

    Article  Google Scholar 

  84. Yin S, Li J, Zhang H (2016) Hierarchical hollow nanostructured core@shell recyclable catalysts γ-Fe2O3@LDH@Au25-x for highly efficient alcohol oxidation. Green Chem 18(21):5900–5914. doi:10.1039/c6gc01290f

    Article  Google Scholar 

  85. Badar M, Rahim MI, Kieke M, Ebel T, Rohde M, Hauser H, Behrens P, Mueller PP (2015) Controlled drug release from antibiotic-loaded layered double hydroxide coatings on porous titanium implants in a mouse model. J Biomed Materi Res, Part A 103(6):2141–2149. doi:10.1002/jbm.a.35358

    Article  Google Scholar 

  86. Chen H, Hu L, Chen M, Yan Y, Wu L (2014) Nickel–cobalt layered double hydroxide nanosheets for high-performance supercapacitor electrode materials. Adv Funct Mater 24(7):934–942. doi:10.1002/adfm.201301747

    Article  Google Scholar 

  87. Chen C, Byles CFH, Buffet J-C, Rees NH, Wu Y, O’Hare D (2016) Core–shell zeolite@ aqueous miscible organic-layered double hydroxides. Chem Sci 7(2):1457–1461. doi:10.1039/c5sc03208c

    Article  Google Scholar 

  88. Gomez-Aviles A, Aranda P, Ruiz-Hitzky E (2016) Layered double hydroxide/sepiolite heterostructured materials. Appl Clay Sci 130:83–92. doi:10.1016/j.clay.2015.12.011

    Article  Google Scholar 

  89. Tian N, Tian X, Liu X, Zhou Z, Yang C, Ma L, Tian C, Li Y, Wang Y (2016) Facile synthesis of hierarchical dendrite-like structure iron layered double hydroxide nanohybrids for effective arsenic removal. Chem Commun 52(80):11955–11958. doi:10.1039/c6cc05659h

    Article  Google Scholar 

  90. Jia G, Hu Y, Qian Q, Yao Y, Zhang S, Li Z, Zou Z (2016) Formation of hierarchical structure composed of (Co/Ni) Mn-LDH nanosheets on MWCNT backbones for efficient electrocatalytic water oxidation. ACS Appl Mater Interfaces 8(23):14527–14534. doi:10.1021/acsami.6b02733

    Article  Google Scholar 

  91. Mandal S, Mayadevi S (2008) Cellulose supported layered double hydroxides for the adsorption of fluoride from aqueous solution. Chemosphere 72(6):995–998. doi:10.1016/j.chemosphere.2008.03.053

    Article  Google Scholar 

  92. Sobhana SSL, Bogati DR, Reza M, Gustafsson J, Fardim P (2016) Cellulose biotemplates for layered double hydroxides networks. Microporous Mesoporous Mater 225:66–73. doi:10.1016/j.micromeso.2015.12.009

    Article  Google Scholar 

  93. Wu S, Hui KS, Hui KN (2015) One-dimensional core–shell architecture composed of silver nanowire@hierarchical nickel aluminum layered double hydroxide nanosheet as advanced electrode materials for pseudocapacitor. J Phys Chem C 119(41):23358–23365. doi:10.1021/acs.jpcc.5b07739

    Article  Google Scholar 

  94. Liu X, Tian W, Kong X, Jiang M, Sun X, Lei X (2015) Selective removal of thiosulfate from thiocyanate-containing water by a three-dimensional structured adsorbent: a calcined NiAl-layered double hydroxide film. RSC Adv 5(107):87948–87955. doi:10.1039/c5ra14127c

    Article  Google Scholar 

  95. Guoxiang P, Xinhui X, Jingshan L, Feng C, Zhihong Y, Hongjin F (2014) Preparation of CoAl layered double hydroxide nanoflake arrays and their high supercapacitance performance. Appl Clay Sci 102:28–32. doi:10.1016/j.clay.2014.10.003

    Article  Google Scholar 

  96. Yang Q, Li T, Lu Z, Sun X, Liu J (2014) Hierarchical construction of an ultrathin layered double hydroxide nanoarray for highly-efficient oxygen evolution reaction. Nanoscale 6(20):11789–11794. doi:10.1039/c4nr03371j

    Article  Google Scholar 

  97. Tian W, Kong X, Jiang M, Lei X, Duan X (2016) Hierarchical layered double hydroxide epitaxially grown on vermiculite for Cr(VI) removal. Mater Lett 175:110–113. doi:10.1016/j.matlet.2016.03.141

    Article  Google Scholar 

  98. Yan L, Li R, Li Z, Liu J, Fang Y, Wang G, Gu Z (2013) Three-dimensional activated reduced graphene oxide nanocup/nickel aluminum layered double hydroxides composite with super high electrochemical and capacitance performances. Electrochim Acta 95:146–154. doi:10.1016/j.electacta.2013.02.060

    Article  Google Scholar 

  99. Wan H, Liu J, Ruan Y, Lv L, Peng L, Ji X, Miao L, Jiang J (2015) Hierarchical configuration of NiCo2S4 nanotube@Ni–Mn layered double hydroxide arrays/three-dimensional graphene sponge as electrode materials for high-capacitance supercapacitors. ACS Appl Mater Interfaces 7(29):15840–15847. doi:10.1021/acsami.5b03042

    Article  Google Scholar 

  100. Ma K, Cheng JP, Liu F, Zhang X (2016) Co-Fe layered double hydroxides nanosheets vertically grown on carbon fiber cloth for electrochemical capacitors. J Alloys Compd 679:277–284. doi:10.1016/j.jallcom.2016.04.059

    Article  Google Scholar 

  101. Zhao J, Lu Z, Shao M, Yan D, Wei M, Evans DG, Duan X (2013) Flexible hierarchical nanocomposites based on MnO2 nanowires/CoAl hydrotalcite/carbon fibers for high-performance supercapacitors. RSC Adv 3(4):1045–1049. doi:10.1039/c2ra22566b

    Article  Google Scholar 

  102. Yu J, Lu L, Li J, Song P (2016) Biotemplated hierarchical porous-structure of ZnAl-LDH/ZnCo2O4 composites with enhanced adsorption and photocatalytic performance. RSC Adv 6(16):12797–12808. doi:10.1039/c5ra15758g

    Article  Google Scholar 

  103. Sailaja GS, Zhang P, Anilkumar GM, Yamaguchi T (2015) Aniosotropically organized LDH on PVDF: a geometrically templated electrospun substrate for advanced anion conducting membranes. ACS Appl Mater Interfaces 7(12):6397–6401. doi:10.1021/acsami.5b00532

    Article  Google Scholar 

  104. Shami Z, Amininasab SM, Shakeri P (2016) Structure-property relationships of nanosheeted 3D hierarchical roughness MgAl-layered double hydroxide branched to an electrospun porous nanomembrane: a superior oil-removing nanofabric. ACS Appl Mater Interfaces 8(42):28964–28973. doi:10.1021/acsami.6b07744

    Article  Google Scholar 

  105. Li Z, Shao M, Zhou L, Zhang R, Zhang C, Han J, Wei M, Evans DG, Duan X (2016) A flexible all-solid-state micro-supercapacitor based on hierarchical CuO@layered double hydroxide core shell nanoarrays. Nano Energy 20:294–304. doi:10.1016/j.nanoen.2015.12.030

    Article  Google Scholar 

  106. Fan X, Gao B, Wang T, Huang X, Gong H, Xue H, Guo H, Song L, Xia W, He J (2016) Layered double hydroxide modified WO3 nanorod arrays for enhanced photoelectrochemical water splitting. Appl Catal A 528:52–58. doi:10.1016/j.apcata.2016.09.014

    Article  Google Scholar 

  107. Benito P, de Nolf W, Nuyts G, Monti M, Fornasari G, Basile F, Janssens K, Ospitali F, Scavetta E, Tonelli D, Vaccari A (2014) role of coating-metallic support interaction in the properties of electrosynthesized Rh-based structured catalysts. ACS Catal 4(10):3779–3790. doi:10.1021/cs501079k

    Article  Google Scholar 

  108. Lu X, Zhao C (2015) Electrodeposition of hierarchically structured three-dimensional nickel iron electrodes for efficient oxygen evolution at high current densities. Nat Commun 6:1–7

    Google Scholar 

  109. Li Z, Shao M, An H, Wang Z, Xu S, Wei M, Evans DG, Duan X (2015) Fast electrosynthesis of Fe-containing layered double hydroxide arrays toward highly efficient electrocatalytic oxidation reactions. Chem Sci 6(11):6624–6631. doi:10.1039/c5sc02417j

    Article  Google Scholar 

  110. Shao M, Li Z, Zhang R, Ning F, Wei M, Evans DG, Duan X (2015) Hierarchical conducting polymer@ clay core–shell arrays for flexible all-solid-state supercapacitor devices. Small 11(29):3530–3538. doi:10.1002/smll.201403421

    Article  Google Scholar 

  111. Shao M, Ning F, Zhao J, Wei M, Evans DG, Duan X (2012) Preparation of Fe3O4@ SiO2@ layered double hydroxide core–shell microspheres for magnetic separation of proteins. J Am Chem Soc 134(2):1071–1077. doi:10.1021/ja2086323

    Article  Google Scholar 

  112. Zhang T, Zhou Y, Bu X, Wang Y, Qiu F (2015) Controlled fabrication of hierarchical MgAl2O4 spinel/carbon fiber composites by crystal growth and calcination processes. Ceram Int 41 (9, Part B): 12504–12508. doi: 10.1016/j.ceramint.2015.05.130

  113. Zhang T, Zhou Y, Wang Y, Bu X, Wang H, Zhang M (2015) Morphology-controlled fabrication of hierarchical LDH/C microspheres derived from rape pollen grain. Appl Clay Sci 103:67–70. doi:10.1016/j.clay.2014.11.012

    Article  Google Scholar 

  114. Du X, Zhang D, Shi L, Gao R, Zhang J (2013) Coke- and sintering-resistant monolithic catalysts derived from in situ supported hydrotalcite-like films on Al wires for dry reforming of methane. Nanoscale 5(7):2659–2663. doi:10.1039/c3nr33921a

    Article  Google Scholar 

  115. Ghani M, Frizzarin RM, Maya F, Cerda V (2016) In-syringe extraction using dissolvable layered double hydroxide-polymer sponges templated from hierarchically porous coordination polymers. J Chromatogr A 1453:1–9. doi:10.1016/j.chroma.2016.05.023

    Article  Google Scholar 

  116. Chang YP, Chen YC, Chang PH, Chen SY (2012) Synthesis, characterization, and CO2 adsorptive behavior of mesoporous AlOOH-supported layered hydroxides. Chemsuschem 5(7):1249–1257. doi:10.1002/cssc.201100617

    Article  Google Scholar 

  117. Yue Y, Liu F, Zhao L, Zhang L, Liu Y (2015) Loading oxide nano sheet supported NiCo alloy nanoparticles on the macroporous walls of monolithic alumina and their catalytic performance for ethanol steam reforming. Int J Hydrogen Energy 40(22):7052–7063. doi:10.1016/j.ijhydene.2015.04.036

    Article  Google Scholar 

  118. Li L, Shi J (2008) In situ assembly of layered double hydroxide nano-crystallites within silica mesopores and its high solid base catalytic activity. Chem Commun 8:996–998. doi:10.1039/b717876j

    Article  Google Scholar 

  119. Creasey JJ, Parlett CMA, Manayil JC, Isaacs MA, Wilson K, Lee AF (2015) Facile route to conformal hydrotalcite coatings over complex architectures: a hierarchically ordered nanoporous base catalyst for FAME production. Green Chem 17(4):2398–2405. doi:10.1039/c4gc01689k

    Article  Google Scholar 

  120. Zhang T, Mei Z, Zhou Y, Bu X, Wang Y, Li Q, Yang X (2014) Template-controlled fabrication of hierarchical porous Zn–Al composites with tunable micro/nanostructures and chemical compositions. Cryst Eng Comm 16(9):1793–1801. doi:10.1039/c3ce41839a

    Article  Google Scholar 

  121. Zhang T, Zhou Y, Bu X, Xue J, Hu J, Wang Y, Zhang M (2014) Bio-inspired fabrication of hierarchically porous Mg–Al composites for enhanced BSA adsorption properties. Microporous Mesoporous Mater 188:37–45. doi:10.1016/j.micromeso.2014.01.001

    Article  Google Scholar 

  122. Hai B, Zou Y (2015) Carbon cloth supported NiAl-layered double hydroxides for flexible application and highly sensitive electrochemical sensors. Sens Actuators, B 208:143–150. doi:10.1016/j.snb.2014.11.022

    Article  Google Scholar 

  123. Kim TW, Sahimi M, Tsotsis TT (2008) Preparation of hydrotalcite thin films using an electrophoretic technique. Ind Eng Chem Res 47(23):9127–9132. doi:10.1021/ie071446s

    Article  Google Scholar 

  124. Ma W, Meng F, Cheng Z, Sha X, Xin G, Tan D (2015) Synthesized of macroporous composite electrode by activated carbon fiber and MgCaAl (NO3) hydrotalcite-like compounds to remove bromate. Colloids Surf A 481:393–399. doi:10.1016/j.colsurfa.2015.06.004

    Article  Google Scholar 

  125. Liu L, Wang W, Hu Y (2015) Layered double hydroxide-decorated flexible polyurethane foam: significantly improved toxic effluent elimination. RSC Adv 5(118):97458–97466. doi:10.1039/c5ra19414h

    Article  Google Scholar 

  126. Shao M, Ning F, Zhao Y, Zhao J, Wei M, Evans DG, Duan X (2012) Core shell layered double hydroxide microspheres with tunable interior architecture for supercapacitors. Chem Mater 24(6):1192–1197. doi:10.1021/cm203831p

    Article  Google Scholar 

  127. Zhang C, Shao M, Zhou L, Li Z, Xiao K, Wei M (2016) Hierarchical NiFe layered double hydroxide hollow microspheres with highly-efficient behavior toward oxygen evolution reaction. ACS Appl Mater Interfaces 8:33697–33703. doi:10.1021/acsami.6b12100

    Article  Google Scholar 

  128. Gunawan P, Xu R (2009) Direct assembly of anisotropic layered double hydroxide (LDH) nanocrystals on spherical template for fabrication of drug-LDH hollow nanospheres. Chem Mater 21(5):781–783. doi:10.1021/cm803203x

    Article  Google Scholar 

  129. Xu J, He F, Gai S, Zhang S, Li L, Yang P (2014) Nitrogen-enriched, double-shelled carbon/layered double hydroxide hollow microspheres for excellent electrochemical performance. Nanoscale 6(18):10887–10895. doi:10.1039/c4nr02756f

    Article  Google Scholar 

  130. Li J, Zhang N, Ng DHL (2015) Synthesis of a 3D hierarchical structure of γ-AlO(OH)/Mg–Al-LDH/C and its performance in organic dyes and antibiotics adsorption. J Mater Chem A 3(42):21106–21115. doi:10.1039/c5ta04497a

    Article  Google Scholar 

  131. Zhang F, Xie Y, Xu S, Zhao X, Lei X (2010) Facile fabrication and magnetic properties of macroporous spinel microspheres from layered double hydroxide microsphere precursor. Chem Lett 39(6):588–590. doi:10.1246/cl.2010.588

    Article  Google Scholar 

  132. Li L, Ma R, Iyi N, Ebina Y, Takada K, Sasaki T (2006) Hollow nanoshell of layered double hydroxide. Chem Commun 29:3125–3127. doi:10.1039/b605889b

    Article  Google Scholar 

  133. Martin J, Jack M, Hakimian A, Vaillancourt N, Villemure G (2016) Electrodeposition of Ni-Al layered double hydroxide thin films having an inversed opal structure: application as electrochromic coatings. J Electroanal Chem 780:217–224. doi:10.1016/j.jelechem.2016.09.022

    Article  Google Scholar 

  134. Prevot V, Forano C, Khenifi A, Ballarin B, Scavetta E, Mousty C (2011) A templated electrosynthesis of macroporous NiAl layered double hydroxides thin films. Chem Commun 47(6):1761–1763. doi:10.1039/c0cc04255b

    Article  Google Scholar 

  135. Abolghasemi MM, Yousefi V (2014) Three dimensionally honeycomb layered double hydroxides framework as a novel fiber coating for headspace solid-phase microextraction of phenolic compounds. J Chromatogr A 1345:9–16. doi:10.1016/j.chroma.2014.04.018

    Article  Google Scholar 

  136. Da Silva ES, Prevot V, Forano C, Wong-Wah-Chung P, Burrows HD, Sarakha M (2014) Heterogeneous photocatalytic degradation of pesticides using decatungstate intercalated macroporous layered double hydroxides. Environ Sci Pollut Res 21(19):11218–11227. doi:10.1007/s11356-014-2971-z

    Article  Google Scholar 

  137. Geraud E, Bouhent M, Derriche Z, Leroux F, Prevot V, Forano C (2007) Texture effect of layered double hydroxides on chemisorption of Orange II. J Phys Chem Solids 68(5–6):818–823. doi:10.1016/j.jpcs.2007.02.053

    Article  Google Scholar 

  138. Geraud E, Prevot V, Ghanbaja J, Leroux F (2006) Macroscopically ordered hydrotalcite-type materials using self-assembled colloidal crystal template. Chem Mater 18(2):238–240. doi:10.1021/cm051770i

    Article  Google Scholar 

  139. Geraud E, Rafqah S, Sarakha M, Forano C, Prevot V, Leroux F (2008) Three dimensionally ordered macroporous layered double hydroxides: preparation by templated impregnation/coprecipitation and pattern stability upon calcination. Chem Mater 20(3):1116–1125. doi:10.1021/Cm702755h

    Article  Google Scholar 

  140. Halma M, Castro KADdF, Prevot V, Forano C, Wypych F, Nakagaki S (2009) Immobilization of anionic iron(III) porphyrins into ordered macroporous layered double hydroxides and investigation of catalytic activity in oxidation reactions. J Mol Catal A: Chem 310(1–2):42–50. doi:10.1016/j.molcata.2009.05.017

    Article  Google Scholar 

  141. Woodford JJ, Dacquin J-P, Wilson K, Lee AF (2012) Better by design: nanoengineered macroporous hydrotalcites for enhanced catalytic biodiesel production. Energy Environ Sci 5(3):6145–6150. doi:10.1039/c2ee02837a

    Article  Google Scholar 

  142. Zhao YF, Wei M, Lu J, Wang ZL, Duan X (2009) Biotemplated hierarchical nanostructure of layered double hydroxides with improved photocatalysis performance. ACS Nano 3(12):4009–4016. doi:10.1021/Nn901055d

    Article  Google Scholar 

  143. Xiang X, Hima HI, Wang H, Li F (2008) Facile synthesis and catalytic properties of nickel-based mixed-metal oxides with mesopore networks from a novel hybrid composite precursor. Chem Mater 20(3):1173–1182. doi:10.1021/cm702072t

    Article  Google Scholar 

  144. Chen C, Felton R, Buffet J-C, O’Hare D (2015) Core–shell SiO2@LDHs with tuneable size, composition and morphology. Chem Commun 51(16):3462–3465. doi:10.1039/c4cc10008e

    Article  Google Scholar 

  145. Tarutani N, Tokudome Y, Nakanishi K, Takahashi M (2014) Layered double hydroxide composite monoliths with three-dimensional hierarchical channels: structural control and adsorption behavior. RSC Adv 4(31):16075–16080. doi:10.1039/C4ra00873a

    Article  Google Scholar 

  146. Lei C, Zhu X, Zhu B, Jiang C, Le Y, Yu J (2017) Superb adsorption capacity of hierarchical calcined Ni/Mg/Al layered double hydroxides for Congo red and Cr(VI) ions. J Hazard Mater 321:801–811. doi:10.1016/j.jhazmat.2016.09.070

    Article  Google Scholar 

  147. Varadwaj GBB, Nyamori VO (2016) Layered double hydroxide- and graphene-based hierarchical nanocomposites: synthetic strategies and promising applications in energy conversion and conservation. Nano Res 9(12):3598–3621. doi:10.1007/s12274-016-1250-3

    Article  Google Scholar 

  148. Wang Y, Cao D, Wang G, Wang S, Wen J, Yin J (2011) Spherical clusters of β-Ni(OH)2 nanosheets supported on nickel foam for nickel metal hydride battery. Electrochim Acta 56(24):8285–8290. doi:10.1016/j.electacta.2011.06.098

    Article  Google Scholar 

  149. Liu X, Wang X, Yuan X, Dong W, Huang F (2015) Rational composition and structural design of in situ grown nickel-based electrocatalysts for efficient water electrolysis. J Mater Chem A 4(1):167–172. doi:10.1039/c5ta07047c

    Article  Google Scholar 

  150. Liang H, Li L, Meng F, Dang L, Zhuo J, Forticaux A, Wang Z, Jin S (2015) Porous two-dimensional nanosheets converted from layered double hydroxides and their applications in electrocatalytic water splitting. Chem Mater 27(16):5702–5711. doi:10.1021/acs.chemmater.5b02177

    Article  Google Scholar 

  151. Charradi K, Forano C, Prevot V, Madern D, Amara ABH, Mousty C (2010) Characterization of hemoglobin immobilized in MgAl-layered double hydroxides by the coprecipitation method. Langmuir 26(12):9997–10004

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from JSPS-MAE SAKURA program (Grant No. 34148TB) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanessa Prevot.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prevot, V., Tokudome, Y. 3D hierarchical and porous layered double hydroxide structures: an overview of synthesis methods and applications. J Mater Sci 52, 11229–11250 (2017). https://doi.org/10.1007/s10853-017-1067-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1067-9

Keywords

Navigation