Skip to main content

Advertisement

Log in

Toughening improvement to a soybean meal-based bioadhesive using an interpenetrating acrylic emulsion network

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The goal of this investigation was to improve the water resistance of soybean meal-based (SM) bioadhesive and enhance the mechanical properties of the bonded plywood by combining triglycidylamine (TGA) cross-linking with an acrylic emulsion interpenetrating network (IPN). The solid content, functional groups, crystallinity, mass loss after hydrolyzing, fracture surface micrographs, and thermal stability of the resulting adhesives were characterized. Three-ply plywood was fabricated and its dry and wet shear strength was determined. The experimental results indicated that the introduction of 8 % TGA produced an improvement of 15.1 % in the water resistance of SM adhesive and 86.8 % in the wet shear strength of plywood as a result of the chemical cross-linking between epoxy groups and protein molecules. However, this reaction increased the brittleness of adhesive and caused an insufficient dry bond strength. Incorporating 8 % AE into the SM/TGA adhesive resulted in a water resistance that was improved by 24.6 %, a dry shear strength that was increased by 44.0 % to 1.80 MPa and a wet shear strength that was increased by 47.9 % to 1.05 MPa. The improvements were attributed to the formation of IPN which increased the solid content, improved the toughness of the adhesive, and promoted an uniform and compact cured structure. All results suggested that chemical cross-linking can effectively improve the water resistance of SM adhesive, but will aggravate the brittleness. Toughening improvement is an effective approach to enhance the performance of the SPAs and solve the low dry strength issue of resulting composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Pizzi A (2013) Bioadhesives for wood and fibres: a critical review. Rev Adhes Adhes 1:88–113. doi:10.7569/RAA.2013.097303

    Article  Google Scholar 

  2. Pizzi A (2006) Recent developments in eco-efficient bio-based adhesives for wood bonding: opportunities and issues. J Adhes Sci Technol 20:829–846. doi:10.1163/156856106777638635

    Article  Google Scholar 

  3. Nordqvist P, Nordgren N, Khabbaz F, Malmström E (2013) Plant proteins as wood adhesives: bonding performance at the macro- and nanoscale. Ind Crop Prod 44:246–252. doi:10.1016/j.indcrop.2012.11.021

    Article  Google Scholar 

  4. Acosta E (2007) Protein bioadhesives. Inform Cham 18:56

    Google Scholar 

  5. Cheng HN, Ford C, Dowd MK, He Z (2016) Soy and cottonseed protein blends as wood adhesives. Ind Crop Prod 85:324–330. doi:10.1016/j.indcrop.2015.12.024

    Article  Google Scholar 

  6. Khosravi S, Nordqvist P, Khabbaz F, Öhman C, Bjurhager I, Johansson M (2015) Wetting and film formation of wheat gluten dispersions applied to wood substrates as particle board adhesives. Eur Polym J 67:476–482. doi:10.1016/j.eurpolymj.2014.11.034

    Article  Google Scholar 

  7. Li N, Wang Y, Tilley M, Bean SR, Wu X, Sun XS, Wang D (2011) Adhesive performance of sorghum protein extracted from sorghum DDGS and flour. J Polym Environ 19:755–765. doi:10.1007/s10924-011-0305-5

    Article  Google Scholar 

  8. Li J, Li X, Li J, Gao Q (2015) Investigating the use of peanut meal: a potential new resource for wood adhesives. RSC Adv 5:80136–80141

    Article  Google Scholar 

  9. Ghosh Dastidar T, Netravali AN (2013) A soy flour based thermoset resin without the use of any external crosslinker. Green Chem 15:3243–3251. doi:10.1039/C3GC40887F

    Article  Google Scholar 

  10. Sun XS (2011) Soy protein polymers and adhesion properties. J Biobased Mater Bioenergy 5:409–432. doi:10.1166/jbmb.2011.1183

    Article  Google Scholar 

  11. Frihart CR, Birkeland MJ (2014) Soy properties and soy wood adhesives. In: Brentin RP (ed) Soy-Based Chemicals and Materials. Oxford University Press, Washington, DC, pp 167–192

    Google Scholar 

  12. Nordqvist P, Khabbaz F, Malmström E (2010) Comparing bond strength and water resistance of alkali-modified soy protein isolate and wheat gluten adhesives. Int J Adhes Adhes 30:72–79. doi:10.1016/j.ijadhadh.2009.09.002

    Article  Google Scholar 

  13. Huang W, Sun X (2000) Adhesive properties of soy proteins modified by urea and guanidine hydrochloride. J Am Oil Chem Soc 77:101–104. doi:10.1007/s11746-000-0016-6

    Article  Google Scholar 

  14. Huang W, Sun X (2000) Adhesive properties of soy proteins modified by sodium dodecyl sulfate and sodium dodecylbenzene sulfonate. J Am Oil Chem Soc 77:705–708. doi:10.1007/s11746-000-0113-6

    Article  Google Scholar 

  15. Wang Y, Mo X, Sun XS, Wang D (2007) Soy protein adhesion enhanced by glutaraldehyde crosslink. J Appl Polym Sci 104:130–136. doi:10.1002/app.24675View/savecitation

    Article  Google Scholar 

  16. Liu Y, Li K (2007) Development and characterization of adhesives from soy protein for bonding wood. Int J Adhes Adhes 27:59–67. doi:10.1016/j.ijadhadh.2005.12.004

    Article  Google Scholar 

  17. Gao Q, Qin Z, Li C, Zhang S, Li J (2013) Preparation of wood adhesives based on soybean meal modified with PEGDA as a crosslinker and viscosity reducer. BioResources 8:5380–5391

    Google Scholar 

  18. Li H, Li C, Gao Q, Zhang S, Li J (2014) Properties of soybean-flour-based adhesives enhanced by attapulgite and glycerol polyglycidyl ether. Ind Crop Prod 59:35–40. doi:10.1016/j.indcrop.2014.04.041

    Article  Google Scholar 

  19. Li J, Luo J, Li X, Yi Z, Gao Q, Li J (2015) Soybean meal-based wood adhesive enhanced by ethylene glycol diglycidyl ether and diethylenetriamine. Ind Crop Prod 74:613–618. doi:10.1016/j.indcrop.2015.05.066

    Article  Google Scholar 

  20. Luo J, Li C, Li X, Luo J, Gao Q, Li J (2015) A new soybean meal-based bioadhesive enhanced with 5,5-dimethyl hydantoin polyepoxide for the improved water resistance of plywood. RSC Adv 5:62957–62965. doi:10.1039/C5RA05037E

    Article  Google Scholar 

  21. Wang RM, Wang JF, Wang XW, He YF, Zhu YF, Jiang ML (2011) Preparation of acrylate-based copolymer emulsion and its humidity controlling mechanism in interior wall coatings. Prog Org Coat 71:369–375. doi:10.1016/j.porgcoat.2011.04.007

    Article  Google Scholar 

  22. Connolly JM, Alferiev I, Eidelman N, Sacks M, Palmatory E, Kronsteiner A, DeFelice S, Xu J, Ohri R, Narula N, Vyavahare N, Levy RJ, Clark-Gruel JN (2005) Triglycidylamine crosslinking of porcine aortic valve cusps or bovine pericardium results in improved biocompatibility, biomechanics, and calcification resistance: chemical and biological mechanisms. Am J Pathol 166:1–13. doi:10.1016/S0002-9440(10)62227-4

    Article  Google Scholar 

  23. GB/T 14074, (2006) Standardization Administration of the People’s Republic of China, Beijing

  24. GB/T 17657, (2013) Standardization Administration of the People’s Republic of China, Beijing

  25. Poletto M, Zattera AJ, Forte MMC, Santana RMC (2012) Thermal decomposition of wood: influence of wood components and cellulose crystallite size. Bioresource Technol 109:148–153. doi:10.1016/j.biortech.2011.11.122

    Article  Google Scholar 

  26. Kamke FA, Lee JN (2007) Adhesive penetration in wood—a review. Wood Fiber Sci 39:205–220

    Google Scholar 

  27. Liu Y, Li K (2002) Chemical modification of soy protein for wood adhesives. Macromol Rapid Comm 23:739–742. doi:10.1002/1521-3927(20020901)23:13<739:AID-MARC739>3.0.CO;2-0

    Article  Google Scholar 

  28. Gerrard JA (2002) Protein–protein crosslinking in food: methods, consequences, applications. Trends Food Sci Tech 13:391–399. doi:10.1016/S0924-2244(02)00257-1

    Article  Google Scholar 

  29. Karnnet S, Potiyaraj P, Pimpan V (2005) Preparation and properties of biodegradable stearic acid-modified gelatin films. Polym Degrad Stabil 90:106–110. doi:10.1016/j.polymdegradstab.2005.02.016

    Article  Google Scholar 

  30. Mekonnen TH (2014) Valorization of waste protein biomass for bio-based plastics, composites and adhesives development. PhD Dissertation, University of Alberta

  31. Chen J, Chen X, Zhu Q, Chen F, Zhao X, Ao Q (2013) Determination of the domain structure of the 7S and 11S globulins from soy proteins by XRD and FTIR. J Sci Food Agr 93:1687–1691. doi:10.1002/jsfa.5950

    Article  Google Scholar 

  32. Colby R, Rubinstein M (2003) Polymer physics. Oxford University Press, New Yoyk

    Google Scholar 

  33. Kumar R, Choudhary V, Mishra S, Varma IK (2004) Enzymatically-modified soy protein part 2: adhesion behaviour. J Adhes Sci Technol 18:261–273. doi:10.1163/156856104772759458

    Article  Google Scholar 

  34. Qin Z, Gao Q, Zhang S, Li J (2013) Glycidyl methacrylate grafted onto enzyme-treated soybean meal adhesive with improved wet shear strength. BioResources 8:5369–5379

    Article  Google Scholar 

  35. Qi G, Sun X (2011) Soy protein adhesive blends with synthetic latex on wood veneer. J Am Oil Chem Soc 88:271–281. doi:10.1007/s11746-010-1666-y

    Article  Google Scholar 

  36. Zhang Y, Zhu W, Lu Y, Gao Z, Gu J (2014) Nano-scale blocking mechanism of MMT and its effects on the properties of polyisocyanate-modified soybean protein adhesive. Ind Crop Prod 57:35–42. doi:10.1016/j.indcrop.2014.03.027

    Article  Google Scholar 

  37. Gao Z, Zhang Y, Fang B, Zhang L, Shi J (2015) The effects of thermal-acid treatment and crosslinking on the water resistance of soybean protein. Ind Crop Prod 74:122–131. doi:10.1016/j.indcrop.2015.04.026

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for financial support from Beijing Natural Science Foundation (2151003) and the Special Fund for Forestry Research in the Public Interest (201404501).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Gao or Jianzhang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, J., Luo, J., Li, X. et al. Toughening improvement to a soybean meal-based bioadhesive using an interpenetrating acrylic emulsion network. J Mater Sci 51, 9330–9341 (2016). https://doi.org/10.1007/s10853-016-0180-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0180-5

Keywords

Navigation