Skip to main content
Log in

Methods for fibre orientation analysis of X-ray tomography images of steel fibre reinforced concrete (SFRC)

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

One of the most important factors to determine the mechanical properties of a fibre composite material is the orientation of the fibres in the matrix. This paper presents Hessian matrix-based algorithms to retrieve the orientation of individual fibres out of steel fibre reinforced cementitious composites samples scanned with an X-ray computed tomography scanner. The software implemented with the algorithms includes a massive data filtering component to remove noise from the data-sets and prepare them correctly for the analysis. Due to its short computational times and limited need for user intervention, the software is able to process and analyse large batches of data in short periods and provide results in a variety of visual and numerical formats. The application and comparison of these algorithms lead to further insight into the material behaviour. In contrast to the usual assumption that the fibres act only along their main axis, it is shown that the contribution of hooked-end fibres in other directions may be noticeable. This means that fibres, depending on their shape, should act as orthotropic inclusions. The methods can be used by research laboratories and companies on an everyday basis to obtain fibre orientations from samples, which in turn can be used in research, to study stress–strain behaviour, as input to constitutive models or for quality assurance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Wang Y, Zureick AH, Cho BS, Scott DE (1994) Properties of fibre reinforced concrete using recycled fibres from carpet industrial waste. J Mater Sci 29(16):4191–4199. doi:10.1007/BF00414198

    Article  Google Scholar 

  2. Li VC (2013) Biegsamer beton. Spektrum der Wissenschaft, Heidelberg, Germany

    Google Scholar 

  3. Purnell P, Buchanan AJ, Short NR, Page CL, Majumdar AJ (2000) Determination of bond strength in glass fibre reinforced cement using petrography and image analysis. J Mater Sci 35(18):4653–4659. doi:10.1023/A:1004882419034

    Article  Google Scholar 

  4. Schnell J, Breit W, Schuler F (2011) Use of computer-tomography for the analysis of fibre reinforced concrete. In: Sruma V (ed) Proceedings of the fib symposium Prague 2011, pp 583–586

  5. Rao TG, Seshu DR (2005) Analytical model for the torsional response of steel fiber reinforced concrete members under pure torsion. Cem Concr Compos 27(4):493–501. doi:10.1016/j.cemconcomp.2004.03.006

    Article  Google Scholar 

  6. Ferrara L, Meda A (2006) Relationships between fibre distribution, workability and the mechanical properties of SFRC applied to precast roof elements. Mater Struct 39(4):411–420. doi:10.1617/s11527-005-9017-4

    Article  Google Scholar 

  7. Sivakumar A, Santhanam M (2007) A quantitative study on the plastic shrinkage cracking in high strength hybrid fibre reinforced concrete. Cem Concr Compos 29(7):575–581. doi:10.1016/j.cemconcomp.2007.03.005

    Article  Google Scholar 

  8. Li VC, Horii H, Kabele P, Kanda T, Lim YM (2000) Repair and retrofit with engineered cementitious composites. Eng Fract Mech 65:317–334

    Article  Google Scholar 

  9. Naaman AE (2007) High performance fiber reinforced cement composites: classification and applications. http://enpub.fulton.asu.edu/cement/CBM_CI/topics.htm

  10. Lepech MD, Li VC (2008) Large scale processing of engineered cementitious composites. ACI Mater J 105(4):358–366

    Google Scholar 

  11. Granju J, Ringot E (1989) Amorphous iron fiber reinforced concretes and mortars, comparison of the fiber arrangement. Acta Stereol 8:579–584

    Google Scholar 

  12. Wuest J, Denarie E, Brühwiler E, Tamarit L, Kocher M, Gallucci E (2009) Tomography analysis of fiber distribution and orientation in ultra high-performance fiber-reinforced composites with high-fiber dosages. Exp Tech 33(5):50–55. doi:10.1111/j.1747-1567.2008.00420.x

    Article  Google Scholar 

  13. Le TH, Dumont P, Orgéas L, Favier D, Salvo L, Boller E (2008) X-ray phase contrast microtomography for the analysis of the fibrous microstructure of SMC composites. Compos Part A 39(1):91–103. doi:10.1016/j.compositesa.2007.08.027

    Article  Google Scholar 

  14. Dumont P, Corre SL, Orgéas L, Favier D (2009) A numerical analysis of the evolution of bundle orientation in concentrated fibre-bundle suspensions. J Non-Newton Fluid Mech 160(2–3):76–92. doi:10.1016/j.jnnfm.2009.03.001

    Article  Google Scholar 

  15. Herrmann H, Eik M (2011) Some comments on the theory of short fibre reinforced material. Proc Estonian Acad Sci 60(3):179–183. doi:10.3176/proc.2011.3.06

    Article  Google Scholar 

  16. Barnett S, Lataste JF, Parry T, Millard S, Soutsos M (2010) Assessment of fibre orientation in ultra high performance fibre reinforced concrete and its effect on flexural strength. Mater Struct 43(7):1009–1023. doi:10.1617/s11527-009-9562-3

    Article  Google Scholar 

  17. Eik M, Lõhmus K, Tigasson M, Listak M, Puttonen J, Herrmann H (2013) DC-conductivity testing combined with photometry for measuring fibre orientations in SFRC. J Mater Sci 48(10):3745–3759. doi:10.1007/s10853-013-7174-3

    Article  Google Scholar 

  18. Eik M, Herrmann H (2012) Raytraced images for testing the reconstruction of fibre orientation distributions. Proc Estonian Acad Sci 61:128–136. doi:10.3176/proc.2012.2.05

    Article  Google Scholar 

  19. Cloetens P, Pateyron-Salomé M, Buffiere JY, Peix G, Baruchel J, Peyrin F, Schlenker M (1997) Observation of microstructure and damage in materials by phase sensitive radiography and tomography. J Appl Phys 81(9):5878–5886. doi:10.1063/1.364374

    Article  Google Scholar 

  20. Suuronen JP, Kallonen A, Eik M, Puttonen J, Serimaa R, Herrmann H (2013) Analysis of short fibres orientation in steel fibre reinforced concrete (SFRC) using X-ray tomography. J Mater Sci 48(3):1358–1367. doi:10.1007/s10853-012-6882-4

    Article  Google Scholar 

  21. Vicente MA, Gonzalez DC, Minguez J (2014) Determination of dominant fibre orientations in fibre-reinforced high-strength concrete elements based on computed tomography scans. Nondestruct Test Eval 29(2):164–182. doi:10.1080/10589759.2014.914204

    Article  Google Scholar 

  22. Ponikiewski T, Katzer J, Bugdol M, Rudzki M (2014) Steel fibre spacing in self-compacting concrete precast walls by X-ray computed tomography. Mater Struct. doi:10.1617/s11527-014-0444-y

  23. Buffiere J, Maire E, Adrien J, Masse J, Boller E (2010) In situ experiments with X ray tomography: an attractive tool for experimental mechanics. Exp Mech 50(3):289–305. doi:10.1007/s11340-010-9333-7

    Article  Google Scholar 

  24. Yoo TS, Ackerman MJ, Lorensen WE, Schroeder W, Chalana V, Aylward S, Metaxas D, Whitaker R (2002) Engineering and algorithm design for an image processing API: a technical report on ITK-the insight toolkit. In: Westwood J (ed) Proceedings of medicine meets virtual reality, National Library of Medicine, National Institutes of Health, Bethesda, IOS Press, Amsterdam, pp 586–592

  25. Redenbach C, Rack A, Schladitz K, Wirjadic O, Godehardt M (2012) Beyond imaging: on the quantitative analysis of tomographic volume data. Int J Mater Res 2:217–227

    Article  Google Scholar 

  26. Pastorelli E, Herrmann H (2016) Time-efficient automated analysis for fibre orientations in steel fibre reinforced concrete. Proc Estonian Acad Sci 65:1. doi:10.3176/proc.2016.1.02

    Google Scholar 

  27. Pastorelli E, Herrmann H (2014) Virtual reality visualization for short fibre orientation analysis. In: Proceedings of the 14th biennial Baltic electronics conference (BEC 2014). Tallinn, Estonia, pp 201–204. doi:10.1109/BEC.2014.7320591

  28. Pastorelli E, Herrmann H (2015) \(\mu \)TANS: micro tomographies analysis software. https://bitbucket.org/VisParGroup/

  29. Eik M, Puttonen J, Herrmann H (2015) An orthotropic material model for steel fibre reinforced concrete based on the orientation distribution of fibres. Compos Struct 121:324–336. doi:10.1016/j.compstruct.2014.11.018

    Article  Google Scholar 

  30. Herrmann H, Eik M, Berg V, Puttonen J (2014) Phenomenological and numerical modelling of short fibre reinforced cementitious composites. Meccanica 49(8):1985–2000. doi:10.1007/s11012-014-0001-3

    Article  Google Scholar 

  31. Altenbach H, Naumenko K, L’vov G, Pilipenko SN (2003) Numerical estimation of the elastic properties of thin-walled structures manufactured from short-fiber-reinforced thermoplastics. Mech Compos Mater 39(3):221–234. doi:10.1023/A:1024566026411

    Article  Google Scholar 

  32. Lehmann G (2007) Label object representation and manipulation with ITK. Insight J. http://hdl.handle.net/1926/584

  33. Dillencourt MB, Samet H, Tamminen M (1992) A general approach to connected-component labeling for arbitrary image representations. J ACM 39(2):253–280. doi:10.1145/128749.128750

    Article  Google Scholar 

  34. Feldkamp L, Davis L, Kress J (1984) Practical cone-beam algorithm. J Opt Soc Am 1(6):612–619

    Article  Google Scholar 

  35. Eik M (2014) Orientation of short steel fibres in concrete: measuring and modelling. Ph.D. thesis, Institute of Cybernetics at Tallinn University of Technology, Faculty of Civil Engineering and Aalto University School of Engineering. http://digi.lib.ttu.ee/i/file.php?DLID=965

  36. Abràmoff MD, Magalhães PJ, Ram SJ (2004) Image processing with ImageJ. Biophotonics Int 11(7):36–42

    Google Scholar 

  37. Frangi AF, Niessen WJ, Vincken KL, Viergever MA (1998) Multiscale vessel enhancement filtering. In: Wells WM, Colchester A, Delp S (eds) Medical image computing and computer-assisted intervention—MICCAI’98, vol 1496., Lecture Notes in Computer ScienceSpringer, Berlin, pp 130–137

    Chapter  Google Scholar 

  38. Frangi AF (2001) Three-dimensional model-based analysis of vascular and cardiac images. Ph.D. thesis, University of Utrecht

  39. Soille P (2003) Morphological image analysis: principles and applications, 2nd edn. Springer, Secaucus

    Google Scholar 

  40. R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org. ISBN 3-900051-07-0

  41. Lemon J (2006) Plotrix: a package in the red light district of R. R-news 6(4):8–12. http://CRAN.R-project.org/doc/Rnews/

  42. Dimitriadou E, Hornik K, Leisch F, Meyer D, , Weingessel A (2011) e1071: misc functions of the department of statistics (e1071), R package version 1.5–25, TU Wien. http://CRAN.R-project.org/package=e1071

  43. Poncet P (2010) modeest: mode estimation, R package version 1.14. http://CRAN.R-project.org/package=modeest

  44. Adler D, Murdoch D (2010) rgl: 3D visualization device system (OpenGL), R package version 0.91. http://CRAN.R-project.org/package=rgl

  45. Wuertz D, et al., see the SOURCE file (2009) fMultivar: multivariate market analysis, R package version 2100.76. http://CRAN.R-project.org/package=fMultivar

  46. Matteis G, Sonnet A, Virga E (2008) Landau theory for biaxial nematic liquid crystals with two order parameter tensors. Contin Mech Thermodyn 20(6):347–374. doi:10.1007/s00161-008-0086-9

    Article  Google Scholar 

  47. Ehrentraut H, Muschik W (1998) On symmetric irreducible tensors in d-dimensions. ARI Int J Phys Eng Sci 51(2):149–159. doi:10.1007/s007770050048

    Google Scholar 

  48. Herrmann H (2016) An improved constitutive model for short fibre reinforced cementitious composites based on the orientation tensor. In: Altenbach H, Forest S (eds) Generalizes continua as models for materials with multi-scale-effects or under multi-field-actions. Advanced Structured Materials, vol 8611. Springer, Berlin

    Google Scholar 

Download references

Acknowledgements

This study was compiled with the assistance of the Tiger University Program of the Estonian Information Technology Foundation (VisPar system, EITSA/HITSA Tiigriülikool Grants 10-03-00-24, 12-03-00-11, 13030009 and travel Grants to present at VARE 2013 for E.P. and at SalentoAVR 2014 for H.H.). This research was supported by the European Union through the European Regional Development Fund, in particular through funding for the “Centre for Nonlinear Studies” as an Estonian national centre of excellence. This research was supported by the European Social Fund’s Doctoral Studies and Internationalisation Program DoRa T4 and the Doctoral School in Information and Communication Technology, which are carried out by Archimedes Foundation (scholarship for E.P.).

Author contributions

All authors contributed to the research and this article. In particular, HH designed the new algorithm and performed statistics, EP implemented the algorithm and filtering, JS and AK performed the tomography scanning and volume reconstruction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiko Herrmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herrmann, H., Pastorelli, E., Kallonen, A. et al. Methods for fibre orientation analysis of X-ray tomography images of steel fibre reinforced concrete (SFRC). J Mater Sci 51, 3772–3783 (2016). https://doi.org/10.1007/s10853-015-9695-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9695-4

Keywords

Navigation