Skip to main content
Log in

FTIR studies on polymorphic control of PVDF ultrathin films by heat-controlled spin coater

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The performance of organic polymer-based memory devices based on polyvinylidene fluoride (PVDF) ultrathin films depends on the extent of its ferroelectric crystalline phase content. In the present study, the changes in polymorphs of PVDF ultrathin films prepared by using heat-controlled spin coater are examined. The polymorphic changes were analyzed by using FTIR-transmission (TS) and FTIR-grazing incidence reflection–absorption spectroscopy (GIRAS) as a function of varying (i) spin-coating temperatures (SCT-30 to 80 °C), (ii) spin-coating substrates (KBr, ITO and Gold) and (iii) thermal treatments [as-cast (AC) at 30 °C, annealed at 130 °C (AN130) and melt (200 °C)-slow cooled (MSC)] conditions. Compared to MSC samples, the AC and AN130 samples exhibited higher β-crystalline (polar, all-trans) phase along with the complete absence of α-crystalline (non-polar, tgtg′) phase at lower SCT-30 and 40 °C irrespective of the substrates used, thereby avoiding the need of high-temperature SCT conditions. Among the three substrates used, FTIR-GIRAS data obtained using ITO and Gold substrates were more favored than the FTIR-TS data obtained using KBr window due to their real-time usage as the substrate for electronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hilczer B, Smogor H, Goslar J (2006) Dielectric response of polymer relaxors. J Mater Sci 41:117–127. doi:10.1007/s10853-005-5949-x

    Article  Google Scholar 

  2. Ling QD, Liaw DJ, Zhu C, Chan DSH, Kang ET, Neoh KG (2008) Polymer electronic memories: materials, devices and mechanisms. Prog Polym Sci 33:917–978

    Article  Google Scholar 

  3. Horiuchi S, Tokura Y (2008) Organic ferroelectrics. Nat Mater 7:357–366

    Article  Google Scholar 

  4. Matsuo Y, Ijichi T, Hatori J, Ikehata S (2004) Fabrication and electrical properties of field effect transistor based on ferroelectric insulator and pentacene film. Curr Appl Phys 4:210–212

    Article  Google Scholar 

  5. Raju S, Muralidharan R, Krishnan H (2015) Ferroelectric-like transition on a hygroscopic barium thiourea chloride single crystal. Mod Phys Lett B 29:1550047

    Article  Google Scholar 

  6. Nakatani N (2011) Observation of ferroelectric domain structure in TGS. Ferroelectrics 413:238–265

    Article  Google Scholar 

  7. Furukawa T, Date M, Ohuchi M, Chiba A (1984) Ferroelectric switching characteristics in a copolymer of vinylidene fluoride and trifluoroethylene. J Appl Phys 56:1481–1486

    Article  Google Scholar 

  8. Prabu AA, Lee JS, Kim KJ, Lee HS (2006) Infrared spectroscopic studies on crystallization and Curie transition behavior of ultrathin films of P(VDF/TrFE) (72/28). Vib Spectrosc 41:1–13

    Article  Google Scholar 

  9. Prabu AA, Kim KJ, Park C (2009) Effect of thickness on the crystallinity and curie transition behavior in P(VDF/TrFE) (72/28) copolymer thin films using FTIR-transmission spectroscopy. Vib Spectrosc 49:101–109

    Article  Google Scholar 

  10. Chen S, Li X, Yao K, Tay FEH, Kumar A, Zeng K (2012) Self-polarized ferroelectric PVDF homopolymer ultra-thin films derived from langmuir–blodgett deposition. Polymer 53:1404–1408

    Article  Google Scholar 

  11. Ke K, Potschke P, Jehnichen D, Fischer D, Voit B (2014) Achieving β-phase poly(vinylidene fluoride) from melt cooling: effect of surface functionalized carbon nanotubes. Polymer 55:611–619

    Article  Google Scholar 

  12. Kim KJ, Chang YM, Yoon S, Kim HJ (2009) A novel piezoelectric PVDF film-based physiological sensing belt for a complementary respiration and heartbeat monitoring system. Integr Ferroelectr 107:53–68

    Article  Google Scholar 

  13. Mandal D, Yoon S, Kim KJ (2011) Origin of piezoelectricity in an electrospun poly(vinylidene fluoride-trifluoroethylene) nanofiber web-based nanogenerator and nano-pressure sensor. Macromol Rapid Commun 32:831–837

    Article  Google Scholar 

  14. Chen XZ, Li Q, Chen X, Guo X, Ge HX, Liu Y, Shen QD (2013) Nano-imprinted ferroelectric polymer nanodot arrays for high density data storage. Adv Funct Mater 23:3124–3129

    Article  Google Scholar 

  15. Mhalgi MV, Khakhar DV, Misra A (2007) Stretching induced phase transformations in melt extruded poly(vinylidene fluoride) cast films: effect of cast roll temperature and speed. Polym Eng Sci 47:1992–2004

    Article  Google Scholar 

  16. Du C, Zhu B, Xu Y (2007) Effects of stretching on crystalline phase structure and morphology of hard elastic PVDF fibers. J Appl Polym Sci 104:2254–2259

    Article  Google Scholar 

  17. da Silva AB, Wisniewski C, Esteves JVA, Gregorio R (2010) Effect of drawing on the dielectric properties and polarization of pressed solution cast β-PVDF films. J Mater Sci 45:4206–4215. doi:10.1007/s10853-010-4515-3

    Article  Google Scholar 

  18. Dhevi DM, Prabu AA, Pathak M (2014) Miscibility, crystallization and annealing studies of poly(vinylidene fluoride)/hyper branched polyester blends. Polymer 55:886–895

    Article  Google Scholar 

  19. Ting Y, Gunawan H, Sugondo A, Chiu CW (2013) A new approach of polyvinylidene fluoride (PVDF) poling method for higher electric response. Ferroelectrics 446:28–38

    Article  Google Scholar 

  20. Kang SJ, Park YJ, Sung J, Jo PS, Park C, Kim KJ, Cho BO (2008) Spin cast ferroelectric beta poly(vinylidene fluoride) thin films via rapid thermal annealing. Appl Phys Lett 92:012921

    Article  Google Scholar 

  21. Yoon S, Prabu AA, Kim KJ, Park C (2008) Metal salt-induced ferroelectric crystalline phase in poly(vinylidene fluoride) films. Macromol Rapid Commun 29:1316–1321

    Article  Google Scholar 

  22. Liang C-L, Xie Q, Bao R-Y, Yang W, Xie B-H, Yang M-B (2014) Induced formation of polar phases in poly(vinylidene fluoride) by cetyl trimethyl ammonium bromide. J Mater Sci 49:4171–4179. doi:10.1007/s10853-014-8112-8

    Article  Google Scholar 

  23. Rath SK, Dubey S, Kumar GS, Kumar S, Patra AK, Bahadur J, Singh AK, Harikrishnan G, Umasankar Patro T (2014) Multi-walled CNT-induced phase behaviour of poly(vinylidene fluoride) and its electro-mechanical properties. J Mater Sci 49:103–113. doi:10.1007/s10853-013-7681-2

    Article  Google Scholar 

  24. Kobayashi M, Tashiro K, Tadokoro H (1975) Molecular vibrations of three crystal forms of poly(vinylidene fluoride). Macromolecules 8:158–171

    Article  Google Scholar 

  25. Cardoso VF, Minas G, Lanceros-Méndez S (2013) Multilayer spin-coating deposition of poly(vinylidene fluoride) films for controlling thickness and piezoelectric response. Sens Actuators A 192:76–80

    Article  Google Scholar 

  26. Gregorio R Jr, Cestari M (1994) Effect of crystallization temperature on the crystalline phase content and morphology of poly(vinylidene fluoride). J Polym Sci Part B 32:859–870

    Article  Google Scholar 

  27. Gregorio R Jr, Borges DS (2008) Effect of crystallization rate on the formation of the polymorphs of solution cast poly(vinylidene fluoride). Polymer 49:4009–4016

    Article  Google Scholar 

  28. Ramasundaram S, Yoon S, Kim KJ, Lee JS (2008) direct preparation of nanoscale thin films of poly(vinylidene fluoride) containing β-crystalline phase by heat-controlled spin coating. Macromol Chem Phys 209:2516–2526

    Article  Google Scholar 

  29. Li JC, Wang CL, Zhong WL, Zhang PL, Webb QH, Webb JF (2002) Vibrational mode analysis of β-phase poly(vinylidene fluoride). Appl Phys Lett 81:2223

    Article  Google Scholar 

  30. Bocaccio T, Bottino A, Capanelli G, Piaggio P (2002) Characterization of PVDF membranes by vibrational spectroscopy. J Membr Sci 210:315–329

    Article  Google Scholar 

  31. Gregorio R Jr, Capitao RC (2000) Morphology and phase transition of high melt temperature crystallized poly(vinylidene fluoride). J Mater Sci 35:299–306. doi:10.1023/A:1004737000016

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Industrial Strategic Technology Development Program (Grant No. 10047976) funded by the Ministry of Trade, Industry & Energy (MOTIE, KOREA).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. Manjula Dhevi or Kap Jin Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhevi, D.M., Prabu, A.A. & Kim, K.J. FTIR studies on polymorphic control of PVDF ultrathin films by heat-controlled spin coater. J Mater Sci 51, 3619–3627 (2016). https://doi.org/10.1007/s10853-015-9685-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9685-6

Keywords

Navigation