Skip to main content
Log in

Modelling grain boundary sliding during creep of austenitic stainless steels

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Two models are presented for grain boundary sliding (GBS) displacement during creep. GBS is considered as crucial for the formation of creep cavities. In the first model, the shear sliding model, GBS is accommodated by grains freely sliding along the boundaries in a power-law creeping material. The GBS rate is proportional to the grain size. In the second model, the shear crack model, the sliding boundaries are represented by shear cracks. The GBS rate is controlled by particles in the boundaries. In both models, the GBS displacement rate is proportional to the creep strain rate. Both models are consistent with existing experimental observations for GBS during creep of austenitic stainless steels. For cavity nucleation at particles, Harris’ model (1965) for the relationship between GBS and a critical particle size has been analysed and found to be in agreement with observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chai G, Boström M, Olaison M, Forsberg U (2013) Creep and LCF behaviors of newly developed advanced heat resistant austenitic stainless steel for A-USC. Procedia Eng 55:232–239. doi:10.1016/j.proeng.2013.03.248

    Article  Google Scholar 

  2. Crossman FW, Ashby MF (1975) The non-uniform flow of polycrystals by grain-boundary sliding accommodated by power-law creep. Acta Metall 23(4):425–440. doi:10.1016/0001-6160(75)90082-6

    Article  Google Scholar 

  3. Ghahremani F (1980) Effect of grain boundary sliding on steady creep of polycrystals. Int J Solids Struct 16(9):847–862. doi:10.1016/0020-7683(80)90053-0

    Article  Google Scholar 

  4. Raj R, Ashby MF (1971) On grain boundary sliding and diffusional creep. Metall Trans 2(4):1113–1127

    Article  Google Scholar 

  5. Riedel H (1984) Cavity nucleation at particles on sliding grain boundaries. A shear crack model for grain boundary sliding in creeping polycrystals. Acta Metall 32(3):313–321

    Article  Google Scholar 

  6. Hong JH, Nam SW, Choi SP (1986) The influences of sulphur and phosphorus additions on the creep cavitation characteristics in type 304 stainless steels. J Mater Sci 21(11):3966–3976

    Article  Google Scholar 

  7. Shin JK, Nam SW, Lee SC (2005) A study of nitrogen effect on the characteristics of creep-rupture in 18Cr-9Ni austenitic steels. Key Eng Mater 297-300(I):409–414

    Article  Google Scholar 

  8. Laha K, Kyono J, Shinya N (2012) Copper, boron, and cerium additions in type 347 austenitic steel to improve creep rupture strength. Metall Mater Trans A 43(4):1187–1197

    Article  Google Scholar 

  9. Cui Y, Sauzay M, Caes C, Bonnaillie P, Arnal B (2014) Modeling and experimental study of long term creep damage in austenitic stainless steels. Procedia Mater Sci 3:122–128. doi:10.1016/j.mspro.2014.06.023

    Article  Google Scholar 

  10. Sandström R, Wu R (2013) Influence of phosphorus on the creep ductility of copper. J Nucl Mater 441(1–3):364–371. doi:10.1016/j.jnucmat.2013.06.020

    Article  Google Scholar 

  11. Raj R, Ashby MF (1975) Intergranular fracture at elevated temperature. Acta Metall 23(6):653–666. doi:10.1016/0001-6160(75)90047-4

    Article  Google Scholar 

  12. Raj R (1978) Nucleation of cavities at second phase particles in grain boundaries. Acta Metall 26(6):995–1006. doi:10.1016/0001-6160(78)90050-0

    Article  Google Scholar 

  13. Yoo MH, Trinkaus H (1983) Crack and cavity nucleation at interfaces during creep. Metall Trans A 14(3):547–561. doi:10.1007/BF02643772

    Article  Google Scholar 

  14. Dyson BF (1983) Continuous cavity nucleation and creep fracture. Scripta Mater 17:31–37

    Article  Google Scholar 

  15. Harris JE (1965) An analysis of creep ductility of magnox Al80 and its implications. J Nucl Mater 15(3):201–207

    Article  Google Scholar 

  16. Harris JE (1965) Nucleation of creep cavities in magnesium. Trans Metall Soc AIME 233:1509

    Google Scholar 

  17. Jiang XG, Earthman JC, Mohamed FA (1994) Cavitation and cavity-induced fracture during superplastic deformation. J Mater Sci 29(21):5499–5514. doi:10.1007/BF00349941

    Article  Google Scholar 

  18. He J, Sandström R (2015) Formation of creep cavities in austenitic stainless steels (in press)

  19. McLean D, Farmer MH (1957) The relation during creep between grain-boundary sliding, sub-crystal size, and extension. J Inst Met 85(8):41–50

    Google Scholar 

  20. Zhang J, Luévano AJ, Przystupa MA (1994) Microstructural models for quantitative analysis of grains and second-phase particles. Mater Charact 33(2):175–185. doi:10.1016/1044-5803(94)90081-7

    Article  Google Scholar 

  21. Laha K, Kyono J, Sasaki T, Kishimoto S, Shinya N (2005) Improved creep strength and creep ductility of type 347 austenitic stainless steel through the self-healing effect of boron for creep cavitation. Metall Mater Trans A 36A:399–409

    Article  Google Scholar 

  22. Kishimoto S, Shinya N, Tanaka H (1987) Grain boundary sliding and surface cracking during creep of 321 stainless steel. Materials 37(414):289–294

    Google Scholar 

  23. Gates RS, Stevens RN (1974) The measurement of grain boundary sliding in polycrystals. Metall Trans 5:505–510

    Article  Google Scholar 

  24. Langdon TG (1972) The effect of surface configuration on grain boundary sliding. Metall Trans 3:797–801

    Article  Google Scholar 

  25. Gittins A (1970) The kinetics of cavity growth in 20Cr/25Ni stainless steel. J Mater Sci 5:223–232. doi:10.1007/BF00550998

    Article  Google Scholar 

  26. Morris DG, Harries DR (1977) Wedge crack nucleation in Type 316 stainless steel. J Mater Sci 12:1587–1597. doi:10.1007/BF00542809

    Article  Google Scholar 

  27. Kozeschnik E, Svoboda J, Fischer FD (2004) Modified evolution equations for the precipitation kinetics of complex phases in multi-component systems. Calphad 28(4):379–382. doi:10.1016/j.calphad.2004.11.003

    Article  Google Scholar 

  28. Arzate OR, Martinez L (1988) Creep cavitation in type 321 stainless steel. Mater Sci Eng A 101:1–6

    Google Scholar 

  29. Needham NG, Gladman T (1980) Nucleation and growth of creep cavities in a type 347 steel. Met Sci 14(2):64–72

    Article  Google Scholar 

  30. Farooq M (2013) Strengthening and degradation mechanisms in austenitic stainless steels at elevated temperature. KTH Royal Institute of Technology, Stockholm

    Google Scholar 

  31. Sandström R, Farooq M, Zurek J (2013) Basic creep models for 25Cr20NiNbN austenitic stainless steels. Mater Res Innov 17(5):355–359

    Article  Google Scholar 

  32. Čermák J (1991) Grain boundary self-diffusion of 51Cr and 59Fe in austenitic NiFeCr alloys. Mater Sci Eng A 148(2):279–287

    Article  Google Scholar 

  33. Arai M, Ogata T, Nitta A (1996) Continuous observation of cavity growth and coalescence by creep-fatigue tests in SEM. Jpn Soc Mech Eng 39(3):382–388

    Google Scholar 

  34. NIMS creep data sheet for austenitic stainless steels. http://smds.nims.go.jp/creep/index_en.html

  35. Pitkänen H, Alatalo M, Puisto A, Ropo M, Kokko K, Vitos L (2013) Ab initio study of the surface properties of austenitic stainless steel alloys. Surf Sci 609:190–194. doi:10.1016/j.susc.2012.12.007

    Article  Google Scholar 

  36. AHV (1991) Properties and selection: nonferrous alloys and special-purpose materials, vol 2. ASM International, Materials Park

    Google Scholar 

  37. Park D-B, Huh M-Y, Jung W-S, Suh J-Y, Shim J-H, Lee S-C (2013) Effect of vanadium addition on the creep resistance of 18Cr9Ni3CuNbN austenitic stainless heat resistant steel. J Alloy Compd 574:532–538. doi:10.1016/j.jallcom.2013.05.106

    Article  Google Scholar 

  38. Vujic S, Sandström R, Sommitsch C (2015) Precipitation evolution and creep strength modelling of 25Cr20NiNbN austenitic steel. Mater High Temp. doi:10.1179/1878641315Y.0000000007

  39. Sandström R, Wu R, Hagström J (2015) Grain boundary sliding in copper and its relation to cavity formation during creep. Mater Sci Eng. doi:10.1016/j.msea.2015.10.100

    Google Scholar 

Download references

Acknowledgements

Financial support by the European Union (directorate-general for energy), within the project MACPLUS (ENER/FP7EN/249809/MACPLUS) in the framework of the Clean Coal Technologies is gratefully acknowledged. The authors would like to thank the China Scholarship Council (CSC) for funding a stipend (File No. 201207090009) for Junjing He.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junjing He.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, J., Sandström, R. Modelling grain boundary sliding during creep of austenitic stainless steels. J Mater Sci 51, 2926–2934 (2016). https://doi.org/10.1007/s10853-015-9601-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9601-0

Keywords

Navigation