Skip to main content
Log in

Modeling of structural hardening in oxide dispersion-strengthened (ODS) ferritic alloys

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Based on a rather simple macroscopic and statistical model, experimentally observed variations of yield stress at room temperature in various ODS alloys were theoretically reproduced. For the first time, yield stress values of ODS steels were calculated by taking into account: (1) two interaction mechanisms between dislocations and nanoprecipitates (shearing or bypassing, simultaneously, depending on the particle size); and (2) the whole, possibly multimodal, nanoparticle distributions experimentally determined by SANS. The relative importances of the various strengthening mechanisms can be easily deduced from these calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. other types of dispersoids might be present but were never observed in the present study

  2. The energy per unit length of any perfect straight dislocation is written in the general form: \(E(\theta _{\text{d}})=K_{\text{E}}(\theta _{\text{d}})b^2\ln (R_{0}/R_{i})\), \(R_{0}\) being the outer cut-off radius. \(K_{\text{E}}\) parameter depends on the nature of the dislocation through \(\theta _{\text{d}}\) which is the angle between the dislocation line and the Burgers vector. In the case of linear isotropic elasticity approximation, \(K_{\text{E}}(\theta _{\text{d}}) = \frac{\mu }{4\pi (1-\nu )}\left[ 1-\nu \cos ^2\theta _{\text{d}}\right] \).

References

  1. Bacon DJ, Kocks UF, Scattergood RO (1973) Effect of dislocation self-interaction on Orowan stress. Philos Mag 28:1241–1263

    Article  Google Scholar 

  2. Brown LM, Ham RK (1971) Dislocation-particle interactions. In: Kelly A, Nicholson RB (eds) Strengthening methods in crystals. Applied Science Publishers, London, p 9

    Google Scholar 

  3. de Carlan Y, Béchade JL, Dubuisson P, Seran JL, Billot P, Bougault A, Cozzika T, Doriot S, Hamon D, Henry J, Ratti M, Lochet N, Nunes D, Olier P, Leblond T, Mathon MH (2009) CEA developments of new ferritic ODS alloys for nuclear applications. J Nucl Mater 386–388:430–443

    Article  Google Scholar 

  4. Deschamps A, Brechet Y (1998) Influence of predeformation and ageing of an Al-Zn-Mg alloy—II. Modeling of precipitation kinetics and yield stress. Acta Mater 47(1):293–305

    Article  Google Scholar 

  5. Friedel J (1964) Dislocations. Pergamon Press, Oxford

    Google Scholar 

  6. Hall EO (1951) The deformation and ageing of mild steel.3. Discussion of results. Proc Phys Soc Lond Sect B 64(381):747–753

    Article  Google Scholar 

  7. Hanson K, Morris JW (1975) Limiting configuration in dislocation glide through a random array of point obstacles. J Appl Phys 46(3):983–990

    Article  Google Scholar 

  8. Hin C, Wirth BD (2010) Formation of Y2O3 nanoclusters in nano-structured ferritic alloys: modeling of precipitation kinetics and yield strength. J Nucl Mater 402:30–37

    Article  Google Scholar 

  9. Hirata A, Fujita T, Wen YR, Schneibel JH, Liu CT, Chen MW (2011) Atomic structure of nanoclusters in oxide-dispersion-strengthened steels. Nat Mater 10:922–926

    Article  Google Scholar 

  10. Hirsch PB, Humphreys FJ (1969) In: Argon AS (ed) Physics of strength and plasticity. MIT Press, Cambridge, p 189

    Google Scholar 

  11. Hoelzer DT, Bentley J, Sokolov MA, Miller MK, Odette GR, Alinger MJ (2007) Influence of particle dispersions on the high-temperature strength of ferritic alloys. J Nucl Mater 367–370:166–172

    Article  Google Scholar 

  12. Klueh RL, Maziasz PJ, Kim IS, Heatherly L, Hoelzer DT, Hashimoto N, Kenik EA, Miyahara K (2002) Tensile and creep properties of an oxide dispersion- strengthened ferritic steel. J Nucl Mater 307–311:773–777

    Article  Google Scholar 

  13. Klueh RL, Shingledecker JP, Swindeman RW, Hoelzer DT (2005) Oxide dispersion-strengthened steels: a comparison of some commercial and experimental alloys. J Nucl Mater 341:103–114

    Article  Google Scholar 

  14. Kocks UF, Argon AS, Ashby MF (1975) Thermodynamics and kinetics of slip. Prog Mater Sci 19:1–281

    Article  Google Scholar 

  15. Koppenaal TJ, Kuhlmann-Wilsdorf D (1964) The effect of prestressing on the strength of neutron-irradiated copper single crystals. Appl Phys Lett 4:59–61

    Article  Google Scholar 

  16. Larson DJ, Maziasz PJ, Kim IS, Miyahara K (2001) Three-dimensional atom probe observation of nanoscale titanium-oxygen clustering in an oxide-dispersion-strengthened Fe-12Cr-3W-0.4Ti+Y2O3 ferritic alloy. Scr Mater 44(2):359–364

    Article  Google Scholar 

  17. Lim H, Lee MG, Kim JH, Adams BL, Wagoner RH (2011) Simulation of polycrystal deformation with grain and grain boundary effects. Int J Plast 27:1328–1354

    Article  Google Scholar 

  18. Lindau R, Molang A, Schirra M, Schlossmacher P, Klimenkov M (2002) Mechanical and microstructural properties of a hipped RAFM ODS-steel. J Nucl Mater 307–311:769–772

    Article  Google Scholar 

  19. Logan RW, Hosford WF (1980) Upper-bound anisotropic yield locus calculations assuming (111)-pensil glide. Int J Mech Sci 22:419

    Article  Google Scholar 

  20. Miller MK, Russell KF, Hoelzer DT (2006) Characterization of precipitates in MA/ODS ferritic alloys. J Nucl Mater 351:261–268

    Article  Google Scholar 

  21. Nan C, Clarke D (1996) The influence of particle size and particle fracture on the elastic/plastic deformation of metal matrix composites. Acta Mater 44(9):3801–3811

    Article  Google Scholar 

  22. Nedelcu S, Kizler P, Schmauder S, Moldovan N (2000) Atomic scale modelling of edge dislocation movement in the alpha-Fe-Cu system. Model Simul Mater Sci Eng 8(2):181–191

    Article  Google Scholar 

  23. Nembach E (1996) Particle strengthening of metals and alloys. Wiley, New-York

    Google Scholar 

  24. Orowan E (1948) Discussion. In: Symposium on internal stresses in metals and alloys, Institute of Metals, London, p 451

  25. Pavlina EJ, Van Tyne CJ (2008) Correlation of yield strength and tensile strength with hardness for steels. J Mater Eng Perform 17:888–893

    Article  Google Scholar 

  26. Petch NJ (1953) The cleavage strength of polycrystals. J Iron Steel Inst 174(1):25–28

    Google Scholar 

  27. Praud M, Mompiou F, Malaplate J, Caillard D, Garnier J, Steckmeyer A, Fournier B (2012) Study of the deformation mechanisms in a Fe-14 % Cr ODS alloy. J Nucl Mater 428:90–97

    Article  Google Scholar 

  28. Preininger D (2004) Effect of particle morphology and microstructure on strength, work-hardening and ductility behaviour of ODS-(7-13)Cr steels. J Nucl Mater 329(Part a):362–368

    Article  Google Scholar 

  29. Queyreau S, Monnet G, Devincre B (2009) Slip systems interactions in alpha-iron determined by dislocation dynamics simulations. Int J Plast 25:361–377

    Article  Google Scholar 

  30. Queyreau S, Monnet G, Devincre B (2010) Orowan strengthening and forest hardening superposition examined by dislocation dynamics simulations. Acta Mater 58:5586–5595

    Article  Google Scholar 

  31. Ratti M (2010) Développement de nouvelles nuances d’aciers ferritiques / martensitiques pour le gainage d’éléments combustibles des réacteurs à neutrons rapides au sodium. PhD thesis, CEA, Institut National Polytechnique de Grenoble

  32. Ratti M, Leuvrey D, Mathon MH, de Carlan Y (2009) Influence of titanium on nano-cluster (Y, Ti, O) stability in ODS ferritic materials. J Nucl Mater 386–388:540–543

    Article  Google Scholar 

  33. Raynor D, Silcock JM (1970) Strengthening mechanisms in gamma precipitating alloys. Met Sci J 4:121–130

    Article  Google Scholar 

  34. Ribis J, de Carlan Y (2012) Interfacial strained structure and orientation relationships of the nanosized oxide particles deduced from elasticity-driven morphology in oxide dispersion strengthened materials. Acta Mater 60:238–252

    Article  Google Scholar 

  35. Schneibel JH, Heilmaier M, Blum W, Hasemann G, Shanmugasundaram T (2011) Temperature dependence of the strength of fine- and ultrafine-grained materials. Acta Mater 59(3):1300–1308

    Article  Google Scholar 

  36. Schwarz RB, Labusch R (1978) Dynamic simulation of solution hardening. J Appl Phys 49(10):5174–5187

    Article  Google Scholar 

  37. Steckmeyer A, Praud M, Fournier B, Malaplate J, Garnier J, Béchade JL, Tournié I, Tancray A, Bougault A, Bonnaillie P (2010) Tensile properties and deformation mechanisms of a 14Cr ODS ferritic steel. J Nucl Mater 405:95–100

    Article  Google Scholar 

  38. Takaki S, Kawasaki K, Kimura Y (2001) Mechanical properties of ultra fine grained steels. J Mater Process Technol 117(3, SI):359–363

    Article  Google Scholar 

  39. Taylor GI (1934) The mechanism of plastic deformation of crystals. Proc R Soc 145:362–387

    Article  Google Scholar 

  40. Taylor GI (1956) Strains in polycrystalline aggreggates. In: Grammel R (ed) Deformation and flow of solids. Springer, Berlin, p 3

    Google Scholar 

  41. Toloczko MB, Gelles DS, Garner FA, Kurtz RJ, Abe K (2004) Irradiation creep and swelling from 400 to 600 degrees C of the oxide dispersion strengthened ferritic alloy MA957. J Nucl Mater 329–333:352–355

    Article  Google Scholar 

  42. Tsuji N, Ito Y, Ueji R, Minamino Y, Koizumi Y, Saito Y (2001) Mechanical properties of ultrafine grained ferritic steels produced by accumulative roll-bonding (ARB) process. In: International symposium on ultrafine grained steels (ISUGS), Fukuoka

  43. Ukai S, Mizuta S, Fujiwara M, Okuda T, Kobayashi T (2002a) Development of 9Cr-ODS martensitic steel claddings for fuel pins by means of ferrite to austenite phase transformation. J Nucl Sci Technol 39:778–788

    Article  Google Scholar 

  44. Ukai S, Okuda T, Fujiwara M, Kobayashi T, Mizuta S, Nakashima H (2002b) Characterization of high temperature creep properties in recrystallized 12Cr-ODS ferritic steel claddings. J Nucl Sci Technol 39:872–879

    Article  Google Scholar 

  45. Zhang Z, Chen D (2006) Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: a model for predicting their yield strength. Scr Mater 54(7):1321–1326

    Article  Google Scholar 

  46. Zhao MC, Hanamura T, Qiu H, Nagai K, Yang K (2006) Grain growth and Hall-Petch relation in dual-sized ferrite/cementite steel with nano-sized cementite particles in a heterogeneous and dense distribution. Scr Mater 54:1193–1197

    Article  Google Scholar 

  47. Zhong SY (2012) Etude des évolutions microstructurales á haute température en fonction des teneurs initiales en Y, Ti, et O et de leur incidence sur les hétérogénéités de déformation dans les aciers ODS Fe-14Cr1W. PhD thesis, U. Paris-Sud

  48. Zhong SY, Ribis J, Klosek V, de Carlan Y, Lochet N, Ji V, Mathon MH (2012) Study of the thermal stability of nanoparticle distributions in an oxide dispersion strengthened (ODS) alloy. J Nucl Mater 428:154–159

    Article  Google Scholar 

  49. Zhong SY, Ribis J, Baudin T, Lochet N, de Carlan Y, Klosek V, Mathon MH (2014a) The effect of Ti/Y ratio on the recrystallisation behaviour of Fe-14 %Cr oxide dispersion-strengthened alloys. J Nucl Mater 452:359–363

    Article  Google Scholar 

  50. Zhong SY, Ribis J, Lochet N, de Carlan Y, Klosek V, Mathon MH (2014b) Influence of nano-particle coherency degree on the coarsening resistivity of the nano-oxide particles of Fe-14Cr-1W ODS alloys. J Nucl Mater 455:618–623

    Article  Google Scholar 

  51. Zhong SY, Ribis J, Lochet N, de Carlan Y, Klosek V, Ji V, Mathon MH (2015) The effect of Y/Ti ratio on oxide precipitate evolution in ODS Fe-14 Wt Pct Cr alloys. Metall Mater Trans A 46A:1413–1418

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Klosek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, S.Y., Klosek, V., Carlan, Y.d. et al. Modeling of structural hardening in oxide dispersion-strengthened (ODS) ferritic alloys. J Mater Sci 51, 2540–2549 (2016). https://doi.org/10.1007/s10853-015-9566-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9566-z

Keywords

Navigation