Skip to main content
Log in

Local octahedral rotations and octahedral connectivity in epitaxially strained LaNiO3/LaGaO3 superlattices

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

For ABO3 perovskites, octahedral rotations and distortions couple strongly to the functional properties. However, in short period perovskite superlattices, the characterization of the octahedral behavior remains challenging due to the local structural variations of the BO6 octahedra. By aberration-corrected high-resolution transmission electron microscopy, we investigated the local octahedral rotations in a [(4 unit cell (u.c.)//4 u.c.) × 8] LaNiO3/LaGaO3 superlattice grown on a (001) SrTiO3 substrate. The octahedral behavior varies along the growth direction even though the superlattice is coherently strained. Near the substrate, octahedral rotations about [100] and [010] axes in the superlattice are suppressed due to the octahedral connectivity—rotational magnitudes and patterns—between the NiO6 and TiO6 octahedra. Away from the substrate, the magnitudes of [100] and [010] rotations are enhanced as a response to substrate-induced tensile strain. Near the surface of the superlattice, the [100] and [010] rotational magnitudes of NiO6 and GaO6 relax to the bulk values of LaNiO3 and LaGaO3, respectively. Our results indicate that the response of octahedral rotations to epitaxial strain in superlattices is significantly different from that in thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Imada M, Fujimori A, Tokura Y (1998) Metal-insulator transitions. Rev Mod Phys 70:1039–1263

    Article  Google Scholar 

  2. Tokura Y, Nagaosa N (2000) Orbital physics in transition-metal oxides. Science 288:462–468

    Article  Google Scholar 

  3. Mannhart J, Schlom DG (2010) Oxide interfaces: an opportunity for electronics. Science 327:1607–1611

    Article  Google Scholar 

  4. Hwang HY, Iwasa Y, Kawasaki M, Keimer B, Nagaosa N, Tokura Y (2012) Emergent phenomena at oxide interfaces. Nat Mater 11:103–113

    Article  Google Scholar 

  5. Yu P, Chu YH, Ramesh R (2012) Oxide interfaces: pathways to novel phenomena. Mater Today 15:320–327

    Article  Google Scholar 

  6. Rondinelli JM, May SJ, Freeland JW (2012) Control of octahedral connectivity in perovskite oxide heterostructures: an emerging route to multifunctional materials discovery. MRS Bull 37:261–270

    Article  Google Scholar 

  7. Rondinelli JM, Fennie CJ (2012) Octahedral rotation-induced ferroelectricity in cation ordered perovskites. Adv Mater 24:1961–1968

    Article  Google Scholar 

  8. Rondinelli JM, Spaldin NA (2011) Structure and properties of functional oxide thin films: insights from electronic-structure calculations. Adv Mater 23:3363–3381

    Article  Google Scholar 

  9. May SJ, Kim JW, Rondinelli JM, Karapetrova E, Spaldin NA, Bhattacharya A, Ryan PJ (2010) Quantifying octahedral rotations in strained perovskite oxide films. Phys Rev B 82:014110

    Article  Google Scholar 

  10. Vailionis A, Boschker H, Siemons W, Houwman EP, Blank DHA, Rijnders G, Koster G (2011) Misfit strain accommodation in epitaxial ABO3 perovskites: lattice rotations and lattice modulations. Phys Rev B 83:064101

    Article  Google Scholar 

  11. Kumah DP, Disa AS, Ngai JH, Chen H, Malashevich A, Reiner JW, Ismail-Beigi S, Walker FJ, Ahn CH (2014) Tuning the structure of nickelates to achieve two-dimensional electron conduction. Adv Mater 26:1935–1940

    Article  Google Scholar 

  12. Johnson-Wilke RL, Marincel D, Zhu S, Warusawithana MP, Hatt A, Sayre J, Delaney KT, Engel-Herbert R, Schlepütz CM, Kim JW, Gopalan V, Spaldin NA, Schlom DG, Ryan PJ, Trolier-McKinstry S (2013) Quantification of octahedral rotations in strained LaAlO3 films via synchrotron X-ray diffraction. Phys Rev B 88:174101

    Article  Google Scholar 

  13. May SJ, Smith CR, Kim JW, Karapetrova E, Bhattacharya A, Ryan PJ (2011) Control of octahedral rotations in (LaNiO3) n /(SrMnO3) m superlattices. Phys Rev B 83:153411

    Article  Google Scholar 

  14. Kinyanjui MK, Lu Y, Gauquelin N, Wu M, Frano A, Wochner P, Reehuis M, Christiani G, Logvenov G, Habermeier HU, Botton GA, Kaiser U, Keimer B, Benckiser E (2014) Lattice distortions and octahedral rotations in epitaxially strained LaNiO3/LaAlO3 superlattices. Appl Phys Lett 104:221909

    Article  Google Scholar 

  15. He J, Borisevich A, Kalinin SV, Pennycook SJ, Pantelides ST (2010) Control of octahedral tilts and magnetic properties of perovskite oxide heterostructures by substrate symmetry. Phys Rev Lett 105:227203

    Article  Google Scholar 

  16. Borisevich AY, Chang HJ, Huijben M, Oxley MP, Okamoto S, Niranjan MK, Burton JD, Tsymbal EY, Chu YH, Yu P, Ramesh R, Kalinin SV, Pennycook SJ (2010) Suppression of octahedral tilts and associated changes in electronic properties at epitaxial oxide heterostructure interfaces. Phys Rev Lett 105:087204

    Article  Google Scholar 

  17. Kan D, Aso R, Kurata H, Shimakawa Y (2014) Unit-cell thick BaTiO3 blocks octahedral tilt propagation across oxide heterointerface. J Appl Phys 115:184304

    Article  Google Scholar 

  18. Aso R, Kan D, Shimakawa Y, Kurata H (2014) Control of structural distortions in transition-metal oxide films through oxygen displacement at the heterointerface. Adv Funct Mater 24:5177–5184

    Article  Google Scholar 

  19. Aso R, Kan D, Shimakawa Y, Kurata H (2013) Atomic level observation of octahedral distortions at the perovskite oxide heterointerface. Sci Rep 3:2214

    Article  Google Scholar 

  20. Aso R, Kan D, Shimakawa Y, Kurata H (2014) Octahedral tilt propagation controlled by A-site cation size at perovskite oxide heterointerfaces. Cryst Growth Des 14:2128–2132

    Article  Google Scholar 

  21. Hwang J, Son J, Zhang JY, Janotti A, Van de Walle CG, Stemmer S (2013) Structural origins of the properties of rare earth nickelate superlattices. Phys Rev B 87:060101

    Article  Google Scholar 

  22. Hwang J, Zhang JY, Son J, Stemmer S (2012) Nanoscale quantification of octahedral tilts in perovskite films. Appl Phys Lett 100:191909

    Article  Google Scholar 

  23. Chaloupka J, Khaliullin G (2008) Orbital order and possible superconductivity in LaNiO3/LaMO3 superlattices. Phys Rev Lett 100:016404

    Article  Google Scholar 

  24. Benckiser E, Haverkort MW, Brück S, Goering E, Macke S, Frano A, Yang X, Andersen OK, Cristiani G, Habermeier HU, Boris AV, Zegkinoglou I, Wochner P, Kim HJ, Hinkov V, Keimer B (2011) Orbital reflectometry of oxide heterostructures. Nat Mater 10:189–193

    Article  Google Scholar 

  25. Wu M, Benckiser E, Haverkort MW, Frano A, Lu Y, Nwankwo U, Brück S, Audehm P, Goering E, Macke S, Hinkov V, Wochner P, Christiani G, Heinze S, Logvenov G, Habermeier HU, Keimer B (2013) Strain and composition dependence of orbital polarization in nickel oxide superlattices. Phys Rev B 88:125124

    Article  Google Scholar 

  26. Boris AV, Matiks Y, Benckiser E, Frano A, Popovich P, Hinkov V, Wochner P, Castro-Colin M, Detemple E, Malik VK, Bernhard C, Prokscha T, Suter A, Salman Z, Morenzoni E, Cristiani G, Habermeier HU, Keimer B (2011) Dimensionality control of electronic phase transitions in nickel-oxide superlattices. Science 332:937–940

    Article  Google Scholar 

  27. Frano A, Schierle E, Haverkort MW, Lu Y, Wu M, Blanco-Canosa S, Nwankwo U, Boris AV, Wochner P, Cristiani G, Habermeier HU, Logvenov G, Hinkov V, Benckiser E, Weschke E, Keimer B (2013) Orbital control of noncollinear magnetic order in nickel oxide heterostructures. Phys Rev Lett 111:106804

    Article  Google Scholar 

  28. Jia CL, Lentzen M, Urban K (2003) Atomic-resolution imaging of oxygen in perovskite ceramics. Science 299:870–873

    Article  Google Scholar 

  29. Jia CL, Urban K (2004) Atomic-resolution measurement of oxygen concentration in oxide materials. Science 303:2001–2004

    Article  Google Scholar 

  30. Jia CL, Mi SB, Urban K, Vrejoiu I, Alexe M, Hesse D (2008) Atomic-scale study of electric dipoles near charged and uncharged domain walls in ferroelectric films. Nat Mater 7:57–61

    Article  Google Scholar 

  31. Jia CL, Mi SB, Faley M, Poppe U, Schubert J, Urban K (2009) Oxygen octahedron reconstruction in the SrTiO3/LaAlO3 heterointerfaces investigated using aberration-corrected ultrahigh-resolution transmission electron microscopy. Phys Rev B 79:081405

    Article  Google Scholar 

  32. Lentzen M, Jahnen B, Jia CL, Thust A, Tillmann K, Urban K (2002) High-resolution imaging with an aberration-corrected transmission electron microscope. Ultramicroscopy 92:233–242

    Article  Google Scholar 

  33. Lentzen M (2006) Progress in aberration-corrected high-resolution transmission electron microscopy using hardware aberration correction. Microsc Microanal 12:191–205

    Article  Google Scholar 

  34. Urban K, Jia CL, Houben L, Lentzen M, Mi SB, Tillmann K (2009) Negative spherical aberration ultrahigh-resolution imaging in corrected transmission electron microscopy. Philos Trans R Soc A 367:3735–3753

    Article  Google Scholar 

  35. Glazer AM (1972) The classification of tilted octahedra in perovskites. Acta Crystallogr Sect B 28:3384–3392

    Article  Google Scholar 

  36. Garcia-Munoz JL, Rodriguez-Carvajal J, Lacorre P, Torrance JB (1992) Neutron-diffraction study of RNiO3 (R = La, Pr, Nd, Sm): electronically induced structural changes across the metal-insulator transition. Phys Rev B 46:4414–4425

    Article  Google Scholar 

  37. Vasylechko L, Matkovskii A, Savytskii D, Suchocki A, Wallrafen F (1999) Crystal structure of GdFeO3-type rare earth gallates and aluminates. J Alloys Compd 291:57–65

    Article  Google Scholar 

  38. Moon EJ, Balachandran PV, Kirby BJ, Keavney DJ, Sichel-Tissot RJ, Schlepütz CM, Karapetrova E, Cheng XM, Rondinelli JM, May SJ (2014) Effect of interfacial octahedral behavior in ultrathin manganite films. Nano Lett 14:2509–2514

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Sabine Grözinger for cross-section TEM sample preparation. We gratefully acknowledge the financial support by the German Research Foundation (DFG) and the Ministry of Science, Research and the Arts (MWK) of the state Baden-Württemberg within the DFG: KA 1295/17-1 Project.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Y. Qi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 306 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, H.Y., Kinyanjui, M.K., Biskupek, J. et al. Local octahedral rotations and octahedral connectivity in epitaxially strained LaNiO3/LaGaO3 superlattices. J Mater Sci 50, 5300–5306 (2015). https://doi.org/10.1007/s10853-015-9077-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9077-y

Keywords

Navigation