Skip to main content

Advertisement

Log in

Synthesis of 3D hierarchical architectures of Tb2(CO3)3: Eu3+ phosphor and its efficient energy transfer from Tb3+ to Eu3+

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Crystalline Tb2(CO3)3: Eu3+ samples were successfully synthesized by the precipitation reaction of rare-earth chloride with ammonium bicarbonate in solution directly under mild condition without further thermal treatment. The samples were characterized by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, thermogravimetry analysis, Fourier transform infrared spectroscopy, photoluminescence, as well as lifetimes. Influences of pH, molar ratio of precipitant to rare earth ions, aging time, temperature, and surfactant on the morphology and crystal structure were investigated in detail. The obtained samples presented dumbbell-like microstructures which were assembled from nanosheets with the assistance of ethylene glycol. Under the excitation of 220-nm ultraviolet light, the Tb2(CO3)3 samples showed the characteristic emissions of Tb3+ corresponding to 5D4 → 7F6,5,4,3 transitions, whereas the Tb2(CO3)3: Eu3+ samples mainly exhibited the characteristic emissions of Eu3+ corresponding to 5D0 → 7F0,1,2,3,4 transitions due to an effective energy transfer from Tb3+ to Eu3+. The energy transfer efficiency from Tb3+ to Eu3+ increased with Eu3+ doping concentration. The multicolor emission of Tb2(CO3)3: Eu3+ samples can be tuned from green to red easily by altering the doping concentration of Eu3+. The materials are expected to apply widely in the future, and the simple method is particularly suitable for large-scale industrial production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Scheme 1
Scheme 2

Similar content being viewed by others

References

  1. Yu M, Lin J, Fu J, Zhang HJ (2003) Sol-gel synthesis and photoluminescent properties of LaPO4: A (A = Eu3+, Ce3+, Tb3+) nanocrystalline thin films. J Mater Chem 13:1413–1419

    Article  Google Scholar 

  2. Capobianco JA, Vetrone F, Boyer JC, Speghini A, Bettinelli M (2002) Visible upconversion of Er3+ doped nanocrystalline and bulk Lu2O3. Opt Mater 19:259–268

    Article  Google Scholar 

  3. Feng W, Sun LD, Zhang YW, Yan CH (2010) Synthesis and assembly of rare earth nanostructures directed by the principle of coordination chemistry in solution based process. Coord Chem Rev 254:1038–1053

    Article  Google Scholar 

  4. Wang G, Peng Q, Li Y (2011) Lanthanide-doped nanocrystals: synthesis, optical-magnetic properties, and applications. Acc Chem Res 44:322–332

    Article  Google Scholar 

  5. Li CX, Lin J (2010) Rare earth fluoride nano-/microcrystals: synthesis, surface modification and application. J Mater Chem 20:6831–6847

    Article  Google Scholar 

  6. Bouzigues C, Gacoin T, Alexandrou A (2011) Biological applications of rare earth based nanoparticles. ACS Nano 5:8488–8505

    Article  Google Scholar 

  7. Baldo MA, O’Brien DF, You Y, Shoustikov A et al (1998) Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395:151–154

    Article  Google Scholar 

  8. Dabbousi BO, RodriguezViejo J, Mikulec FV et al (1997) (CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B 46:9463–9475

    Article  Google Scholar 

  9. Wang GF, Peng Q, Li YD (2009) Upconversion Luminescence of Monodisperse CaF2: Yb3+/Er3+ Nanocrystals. J Am Chem Soc 131:14200–14201

    Article  Google Scholar 

  10. Li P, Peng Q, Li YD (2009) Dual-mode luminescent colloidal spheres from monodisperse rare-earth fluoride nanocrystals. Adv Mater 21:1945–1948

    Article  Google Scholar 

  11. Wang F, Liu XG (2009) Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem Soc Rev 38:976–989

    Article  Google Scholar 

  12. Sun LN, Mai WP, Dang S, Qiu YN, Deng W, Shi LY, Yan W, Zhang HJ (2012) Near-infrared luminescence of periodic mesoporous organosilicas grafted with lanthanide complexes based on visible-light sensitization. J Mater Chem 22:5121–5127

    Article  Google Scholar 

  13. Spassky D, Ivanov S, Kitaeva I, Kolobanov V, Mikhailin V, Ivleva L, Voronina I (2005) Optical and luminescent properties of a series of molybdate single crystals of scheelite crystal structure. Phys Status Solidi C 2:65–68

    Article  Google Scholar 

  14. Salutsky ML, Quill LL (1950) The rare earth metals and their compounds. XII. Carbonates of lanthanum, neodymium and samarium. J Am Chem Soc 72:3306–3307

    Article  Google Scholar 

  15. Sastry RLN, Yoganarasimhan SR (1966) Preparation, characterization and thermal decomposition of praseodymium, terbium and neodymium carbonates. J Inorg Nucl Chem 28:1165–1177

    Article  Google Scholar 

  16. Wakita H, Nagashima K (1972) Synthesis of tengerite type rare earth carbonates. Bull Chem Soc Jpn 45:2476–2479

    Article  Google Scholar 

  17. Mochizuki A, Nagashima K, Wakita H (1974) The synthesis of crystalline hyclrated double carbonates of rare earth elements and sodium. B Chem Soc Jpn 47:755–756

    Article  Google Scholar 

  18. Nagashima K, Wakita H, Mochizuki A (1973) The synthesis of crystalline rare earth carbonates. Bull Chem Soc Jpn 46:152–156

    Article  Google Scholar 

  19. Charles RG (1965) Rare-earth carbonates prepared by homogeneous precipitation. J Inorg Nucl Chem 27:1489–1493

    Article  Google Scholar 

  20. Moeller T, Horwitz EP (1959) Some characteristics of ethylenediaminetetraacetic acid, N-hydroxyethylethylenediaminetriacetic acid, and 1,2-diaminocyclohexanetetraacetic acid chelates of certain rare-earth metal ions. J Inorg Nucl Chem 12:49–59

    Article  Google Scholar 

  21. Head EL, Holley CE (1964) The thermal decomposition of scandium formate and oxalate. J Inorg Nucl Chem 26:525–530

    Article  Google Scholar 

  22. Head EL (1966) preparation of the carbonates of the rare earths from some of their organic acid salts. Inorg Nucl Chem Lett 2:33–37

    Article  Google Scholar 

  23. Tareen JAK, Viswanathiah MN, Krishnamurthy KV (1980) Hydrothermal synthesis and growth of Y(OH)CO3-ancylite like phase. Rev Chim Miner 17:50–57

    Google Scholar 

  24. Tareen JAK, Kutty TRN (1980) Hydrothermal phase equilibria in Ln2O3-H2O-CO2 systems: I. The lighter lanthanides. J Cryst Growth 50:527–532

    Article  Google Scholar 

  25. Tareen JAK, Narayanan TR, Kutty TRN (1980) Hydrothermal growth of Y2(CO3)3·nH2O (tengerite) single crystals. J Cryst Growth 49:761–765

    Article  Google Scholar 

  26. Tareen JAK, Basavalingu B, Kutty TRN (1981) Hydrothermal synthesis of polycrystalline carbonates. J Cryst Growth 55:384–387

    Article  Google Scholar 

  27. Wakita H, Kinoshita S (1979) Synthetic study of the solid-solutions in the systems La2(CO3)3·8H2O–Ce2(CO3)3·8H2O and La(OH)CO3–Ce(OH)CO3. Bull Chem Soc Jpn 52:428–432

    Article  Google Scholar 

  28. Wakita H (1978) The synthesis of hydrated rare earth carbonate single crystals in gels. Bull Chem Soc Jpn 51:2879–2881

    Article  Google Scholar 

  29. Liu S, Ma RJ (1999) Precipitation and characterization of cerous carbonate. J Cryst Growth 206:88–92

    Article  Google Scholar 

  30. Liu S, Ma RJ (1996) Synthesis and structure of hydrated europium carbonate. J Cryst Growth 169:190–192

    Article  Google Scholar 

  31. Palmer MS, Neurock M, Olken MM (2002) Periodic density functional theory study of methane activation over La2O3: activity of O2-, O-, O22-, oxygen point defect, and Sr2+ -doped surface sites. J Am Chem Soc 124:8452–8461

    Article  Google Scholar 

  32. Chen W, Sammynaiken R, Huang YN (2000) Photoluminescence and photostimulated luminescence of Tb3+ and Eu3+ in zeolite-Y. J Appl Phys 88:1424–1431

    Article  Google Scholar 

  33. Li GG, Hou ZY, Peng C, Wang WX, Cheng ZY, Li CX, Lian HZ, Lin J (2000) Electrospinning derived one-dimensional LaOCl: Ln3+ (Ln = Eu/Sm, Tb, Tm) nanofibers, nanotubes and microbelts with multicolor-tunable emission properties. Adv Funct Mater 20:3446–3456

    Article  Google Scholar 

  34. Zhong JM, Zhao WR, Song EH, Deng YQ (2014) Luminescence properties and dynamical processes of energy transfer in BiPO4: Tb3+, Eu3+ phosphor. J Lumin 154:204–210

    Article  Google Scholar 

  35. Di WH, Wang XJ, Zhu PF, Chen BJ (2007) Energy transfer and heat-treatment effect of photoluminescence in Eu3+-doped TbPO4 nanowires. J Solid State Chem 180:467–473

    Article  Google Scholar 

  36. Kim Anh T, Strek W (1988) Dynamics of energy transfer in Tb1−x Eu x P5O14 crystals. J Lumin 42:205–210

    Article  Google Scholar 

  37. Schierning G, Batentschuk M, Osvet A, Winnacker A (2004) On the energy transfer from Tb3+ to Eu3+ in LiTb1−x Eu x P4O12. Radiat Meas 38:529–532

    Article  Google Scholar 

  38. Yang J, Zhang CM, Li CX, Yu YN, Lin J (2008) Energy transfer and tunable luminescence properties of Eu3+ in TbBO3 microspheres via a facile hydrothermal process. Inorg Chem 47:7262–7270

    Article  Google Scholar 

  39. Hou ZY, Cheng ZY, Li GG, Lin J (2011) Electrospinning-derived Tb2(WO4)3: Eu3+ nanowires: energy transfer and tunable luminescence properties. Nanoscale 3:1568–1574

    Article  Google Scholar 

  40. Yue D, Lu W, Jin L, Li CY et al (2014) Controlled synthesis, asymmetrical transport behavior and luminescence properties of lanthanide doped ZnO mushroom-like 3D hierarchical structures. Nanoscale 6:13795–13802

    Article  Google Scholar 

  41. Gai SL, Li CX, Yang PP, Lin J (2014) Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications. Chem Rev 114:2343–2389

    Article  Google Scholar 

  42. Zhang Y, Hao JH (2013) Metal-ion doped luminescent thin films for optoelectronic applications. J Mater Chem C 1:5607–5618

    Article  Google Scholar 

  43. Tsang MK, Bai GX, Hao JH (2015) Stimuli responsive upconversion luminescence nanomaterials and films for various applications. Chem Soc Rev. doi:10.1039/C4CS00171K

    Google Scholar 

  44. Bai GX, Tsang MK, Hao JH (2014) Tuning the luminescence of phosphors: beyond conventional chemical method. Adv Opt Mater. doi:10.1002/adom.201400375

    Google Scholar 

  45. Liu S, Ma RJ (1996) Synthesis and structure of hydrated terbium carbonate. Indian J Chem 35:992–994

    Google Scholar 

  46. Sungur A, Kizilyalli M (1983) Synthesis and structure of Gd2(CO3)3·2H2O, Gd2(CO3)3·3H2O. J Less-Common Met 93:419–423

    Article  Google Scholar 

  47. Li YP, Zhang JH, Zhang X, Luo YS, Lu SZ, Ren XG, Wang XJ, Sun LD, Yan CH (2009) Luminescent properties in relation to controllable phase and morphology of LuBO3: Eu3+ nano/microcrystals synthesized by hydrothermal approach. Chem Mater 21:468–475

    Article  Google Scholar 

  48. Tian Y, Chen BJ, Tian BN, Yu NS (2013) Hydrothermal synthesis and tunable luminescence of persimmon-like sodium lanthanum tungstate: Tb3+, Eu3+ hierarchical microarchitectures. J Colloid Interf Sci 393:44–52

    Article  Google Scholar 

  49. Li CX, Zhang CM, Hou ZY, Wang LL, Quan ZW, Lian HZ, Lin J (2009) β-NaYF4 and β-NaYF4: Eu3+ microstructures: morphology control and tunable luminescence properties. J Phys Chem C 113:2332–2339

    Article  Google Scholar 

  50. Li CX, Yang J, Quan ZW, Yang PP, Kong DY, Lin J (2007) Different microstructures of β-NaYF4 fabricated by hydrothermal process: effects of ph values and fluoride sources. Chem Mater 19:4933–4942

    Article  Google Scholar 

  51. Yu CZ, Fan J, Tian BZ, Zhao DY (2004) Morphology development of mesoporous materials: a colloidal phase separation mechanism. Chem Mater 16:889–898

    Article  Google Scholar 

  52. Lee S, Song D, Kim D, Lee J, Kim S, Park IY, Choi YD (2004) Effects of synthesis temperature on particle size/shape and photoluminescence characteristics of ZnS: Cu nanocrystals. Mater Lett 58:342–346

    Article  Google Scholar 

  53. Galea L, Bohner M, Thuering J, Doebelin N, Aneziris CG, Graule T (2013) Control of the size, shape and composition of highly uniform, non-agglomerated, sub-micrometer β-tricalcium phosphate and dicalcium phosphate platelets. Biomaterials 34:6388–6401

    Article  Google Scholar 

  54. Tseng TK, Choi JH, Jung DW, Davidson M, Holloway PH (2010) Three-dimensional self-assembled hierarchical architectures of gamma-phase flowerlike bism three-dimensional self-assembled hierarchical architectures of gamma-phase flowerlike bismuth oxideuth oxide. ACS Appl Mater Interfaces 2:943–94650

    Article  Google Scholar 

  55. Jia ZG, Yang LL, Wang QZ, Liu JH (2014) Synthesis of hierarchical CoFe2O4 nanorod-assembled superstructures and its catalytic application. Mater Chem Phys 145:116–124

    Article  Google Scholar 

  56. Lim BK, Xiong YJ, Xia YN (2007) A water-based synthesis of octahedral, decahedral, and icosahedral Pd nanocrystals. Angew Chem Int Ed 119:9279–9282

    Article  Google Scholar 

  57. Dexter DL (1953) A theory of sensitized luminescence in solids. J Chem Phys 21:836–850

    Article  Google Scholar 

  58. Huang CH, Chen TM (2010) Ca9La(PO4)7: Eu2+, Mn2+: an emission-tunable phosphor through efficient energy transfer for white light-emitting diodes. Opt Express 18:5089–5099

    Article  Google Scholar 

  59. Wang YL, Jiang XC, Xia YN (2003) A solution-phase, precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions. J Am Chem Soc 125:16176–16177

    Article  Google Scholar 

  60. Jiang LH, Sun GQ, Zhou ZH, Sun SG et al (2005) Size-controllable synthesis of monodispersed SnO2 nanoparticles and application in electrocatalysts. J Phys Chem B 109:8774–8778

    Article  Google Scholar 

  61. Burda C, Chen XB, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102

    Article  Google Scholar 

  62. Zhu LP, Zhang WD, Xiao HM, Yang Y, Fu SY (2008) Facile synthesis of metallic co hierarchical nanostructured microspheres by a simple solvothermal process. J Phys Chem C 112:10073–10078

    Article  Google Scholar 

  63. Huang SH, Zhang X, Wang LZ, Bai L (2012) Controllable synthesis and tunable luminescence properties of Y2(WO4)3: Ln3+ (Ln = Eu, Yb/Er, Yb/Tm and Yb/Ho) 3D hierarchical architectures. Dalton Trans 41:5634–5642

    Article  Google Scholar 

  64. Politi Y, Arad T, Klein E, Weiner S, Addadi L (2004) Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase. Science 306:1161–1164

    Article  Google Scholar 

  65. Cölfen H, Antonietti M (2005) Mesocrystals: inorganic superstructures made by highly parallel crystallization and controlled alignment. Angew Chem Int Ed 44:5576–5591

    Article  Google Scholar 

  66. Zhang N, Bu WB, Xu YP, Jiang DY, Shi JL (2007) Self-assembled flowerlike europium-doped lanthanide molybdate microarchitectures and their photoluminescence properties. J Phys Chem C 111:5014–5019

    Article  Google Scholar 

  67. Wang YH, Huang Y (2014) Enhanced green emission of Eu2+ by energy transfer from the 5D3 Level of Tb3+ in NaCaPO4. J Phys Chem C 118:7002–7009

    Article  Google Scholar 

  68. Thomas KS, Singh S, Dieke GH (1963) Energy levels of Tb3+ in LaCl3 and other chlorides. J Chem Phys 38:2180–2190

    Article  Google Scholar 

  69. Nakazawa E, Shionoya S (1967) Energy transfer between trivalent rare-earth ions in inorganic solids. J Chem Phys 47:3211–3219

    Article  Google Scholar 

  70. Hou L, Cui SB, Fu ZL et al (2014) Facile template free synthesis of KLa(MoO4)2: Eu3+, Tb3+ microspheres and their multicolor tunable luminescence. Dalton Trans 43:5382–5392

    Article  Google Scholar 

  71. Kumar GA, Biju PR, Jose G, Unnikrishnan NV (1999) Static energy transfer for Mn2+: Pr3+ system in phosphate glasses. Mater Chem Phys 60:247–255

    Article  Google Scholar 

Download references

Acknowledgements

This project was financially supported by the National Natural Science Foundation of China (51302229 and 21204074), the Natural Science Foundation Project of CQ CSTC (cstc2012jjA50009), the Fundamental Research Funds for the Central Universities (XDJK2013B016), the China Postdoctoral Science Foundation funded project (2012M521663), the Research Fund for the Doctoral Program of Higher Education of China (20120182120018), the Scientific Research Foundation for Returned Scholars, Ministry of Education of China (46th), the Postdoctoral Scientific Research Project Special Funding of Chongqing (Xm201312), and the Foundation of State Key Laboratory of Rare Earth Resources Utilization (RERU2013015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shanshan Hu or Jun Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Yang, J., Hu, S. et al. Synthesis of 3D hierarchical architectures of Tb2(CO3)3: Eu3+ phosphor and its efficient energy transfer from Tb3+ to Eu3+ . J Mater Sci 50, 4503–4515 (2015). https://doi.org/10.1007/s10853-015-9000-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9000-6

Keywords

Navigation