Skip to main content
Log in

The effect of Vickers hardness indentations on the fracture mode in 8 mol% yttria-stabilised zirconia

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Cubic 8 mol% Y2O3-stabilised ZrO2 is well known for its good oxygen conductivity and therefore it is used in fuel cells, as oxygen sensor for liquid metals and as pH sensor in high temperature water. As a part of its fracture toughness assessment, the crack system caused by Vickers hardness indentations was examined by breaking specimens along an indentation diagonal. It was found that, although the normally observed fracture mode is transgranular, intergranular fracture occurred in the zone below an indentation. Annealing the specimen above 900 °C before breaking caused the disappearance of this effect. The intergranular fracture mode was explained by the combined effect of plastic deformation under the indentation and environmental humidity. Annealing is expected to cause restoration to the un-deformed structure. Observations on the intergranular and transgranular cracking pattern, slow crack growth occurrence and step formation at the fracture surface, are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Atkinson A, Selçuk A (2000) Mechanical behaviour of ceramic oxygen ion-conducting membranes. Solid State Ionics 134:59–66

    Article  Google Scholar 

  2. Mariën A, Lim J, Rosseel K, Vandermeulen W, Van den Bosch J (2012) Solid electrolytes for use in lead-bismuth eutectic cooled nuclear reactors. J Nucl Mater 427:39–45

    Article  Google Scholar 

  3. Bosch RW, Wéber M, Vandermeulen W (2009) Development and testing of an in core YSZ high temperature reference electrode. Power Plant Chem 11:30–37

    Google Scholar 

  4. Dietz M, Tietz H-D (1990) Characterization of engineering ceramics by indentation studies. J Mater Sci 25:3731–3738. doi:10.1007/BF00575412

    Article  Google Scholar 

  5. Anstis GR, Chantikul P, Lawn BR, Marshall DB (1981) A critical evaluation of indentation techniques for measuring fracture toughness: I. Direct crack measurements. J Am Ceram Soc 64:533–538

    Article  Google Scholar 

  6. Zhang W, Subhash G (2001) An elastic plastic model for finite analysis of indentation cracking in brittle materials. Int J Solids Struct 38:5893–5913

    Article  Google Scholar 

  7. Ponton CB, Rawlings RD (1989) Vickers indentation fracture toughness test, part 1: Review of literature and formulation of standardised indentation toughness equations. Mater Sci Technol 5:865–872

    Article  Google Scholar 

  8. Kaliszewski MS, Behrens G, Heuer AH, Shaw MC, Marshall DB, Dransmann GW, Steinbrech RW (1994) Indentation studies on Y2O3-stabilized ZrO2: I. Development of indentation induced cracks. J Am Ceram Soc 77:1185–1193

    Article  Google Scholar 

  9. Miyazaki H, Hyuga H, Yoshizawa Y, Hirao K, Ohji T (2010) Crack profiles under a Vickers indent in silicon nitride ceramics with various microstructures. Ceram Int 36:173–179

    Article  Google Scholar 

  10. Maiti K, Sil A (2010) Relationship between fracture toughness characteristics and morphology of sintered Al2O3 ceramics. Ceram Int 36:2337–2344

    Article  Google Scholar 

  11. West GD, Perkins JM, Lewis MH (2007) The effect of rare earth dopants on grain boundary cohesion in alumina. J Eur Ceram Soc 27:1913–1918

    Article  Google Scholar 

  12. Quinn GD (2007) Fractography of ceramics and glasses, Special Publication 960-16. National Institute for Standards and Technology, Washington, DC

    Google Scholar 

  13. Vandermeulen W, Bosch R-W, Leenaers A, Van Renterghem W, Snijkers F (2010) Degradation of 5 mol% yttria-zirconia by intergranular cracking in water at 300°C. J Mater Sci 45:5502–5511. doi:10.1007/s10853-010-4608-z

    Article  Google Scholar 

  14. Guo X, He J (2003) Hydrothermal degradation of cubic zirconia. Acta Mater 51:5123–5130

    Article  Google Scholar 

  15. Evans AG (1978) Micro fracture from thermal expansion anisotropy-I. Single phase systems. Acta Metall 26:1845–1853

    Article  Google Scholar 

  16. Lankford J (1977) Compressive strength and micro plasticity in polycrystalline alumina. J Mater Sci 12:791–796. doi:10.1007/BF00548172

    Article  Google Scholar 

  17. Hockey BJ (1971) Plastic deformation of aluminium oxide by indentation and abrasion. J Am Ceram Soc 54:223–231

    Article  Google Scholar 

  18. Chan HM, Lawn BR (1988) Indentation deformation and fracture of sapphire. J Am Ceram Soc 71:29–35

    Article  Google Scholar 

  19. Ingel RP, Lewis D III (1988) Elastic anisotropy in zirconia single crystals. J Am Ceram Soc 71:265–271

    Article  Google Scholar 

  20. Mulhearn TO (1959) The deformation of metals by Vickers-type pyramidal indenters. J Mech Phys Solids 7:85–96

    Article  Google Scholar 

  21. Lankford J, Davidson DL (1979) Indentation plasticity and micro fracture in silicon carbide. J Mater Sci 14:1669–1675. doi:10.1007/BF00569289

    Article  Google Scholar 

  22. Park J-K, Yasuda K, Matsuo Y (2001) Effect of crosshead speed on the fracture toughness of soda-lime glass, Al2O3 and Si3N4 ceramics determined by the surface crack in flexure (SCF) method. J Mater Sci 36:2335–2342. doi:10.1023/A:1017537310557

    Article  Google Scholar 

  23. Bansal GK, Duckworth WH (1978) Effects of moisture-assisted slow crack growth on ceramic strength. J Mater Sci 13:239–242. doi:10.1007/BF00647766

    Article  Google Scholar 

  24. Swab JJ, Quinn GD (1998) Effect of precrack “halos” on fracture toughness determination by the surface crack in flexture method. J Am Ceram Soc 81:2261–2268

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willy Vandermeulen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vandermeulen, W., Bosch, RW. & Snijkers, F. The effect of Vickers hardness indentations on the fracture mode in 8 mol% yttria-stabilised zirconia. J Mater Sci 50, 2932–2943 (2015). https://doi.org/10.1007/s10853-015-8858-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-8858-7

Keywords

Navigation