Skip to main content
Log in

The effects of dopant impurities on Cu2ZnSnS4 system Raman properties

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Impurities in Cu2ZnSnS4 (CZTS) can alter the electronic and optical properties, which may reduce photovoltaic device efficiency. Phonon dispersion susceptibility can be used to investigate the effects of foreign dopants on pairing between atoms within lattice. In order to investigate the effect of free holes on the optical phonons and asymmetry in the Raman peaks due to impurities, Sb-, Fe-, and Ag-doped CZTS thin films were prepared and systematically studied. Doping with impurities causes a shift in Raman peak frequency as well as linewidth. An investigation has been made based on the reduced mass of the vibrating CZTS lattice that changes due to dopant addition. For polycrystalline Sb-doped CZTS, the predicted wavenumber shift for Raman ‘A’ mode follows a similar trend as evidenced in experiments and can be explained by the square-root relationship between frequency and the vibrating mass. Raman lineshape for Sb-doped CZTS thin films and nanocrystals becomes wider, asymmetric, and moves toward lower vibrational frequency when laser power density increases. Atomic force microscopy was also performed to examine surface properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Todorov TK, Tang J, Bag S, Gunawan O, Gokmen T, Zhu Y, Mitzi DB (2013) Beyond 11 % efficiency: characteristics of state-of-the-art Cu2ZnSn(S, Se)4 solar cells. Adv Energy Mater 3:34–38

    Article  Google Scholar 

  2. Nagoya A, Asahi R, Wahl R, Kresse G (2010) Defect formation and phase stability of Cu2ZnSnS4 photovoltaic material. Phys Rev B 81:113202

    Article  Google Scholar 

  3. Sarswat PK, Free ML (2012) An evaluation of depletion layer photoactivity in Cu2ZnSnS4 thin film. Thin Solid Films 520:4422–4426

    Article  Google Scholar 

  4. Salomé PMP, Fernandes PA, da Cunha AF, Leitão JP, Malaquias J, Weber A, González JC, da Silva MIN (2010) Growth pressure dependence of Cu2ZnSnSe4 properties. Sol Energy Mater Sol Cells 94:2176–2180

    Article  Google Scholar 

  5. Dimitrievska M, Fairbrother A, Pérez-Rodríguez A, Saucedo E, Izquierdo-Roca V (2014) Raman scattering crystalline assessment of polycrystalline Cu2ZnSnS4 thin films for sustainable photovoltaic technologies: phonon confinement model. Acta Mater 70:272–280

    Article  Google Scholar 

  6. Sarswat PK, Free ML (2013) An investigation of rapidly synthesized Cu2ZnSnS4 nanocrystals. J Cryst Growth 372:87–94

    Article  Google Scholar 

  7. Tablero C (2012) Electronic and photon absorber properties of Cr-doped Cu2ZnSnS4. J Phys Chem C 116:23224–23230

    Article  Google Scholar 

  8. Moore J, Hages C, Lundstrom M, Agrawal R (2012) Influence of Ge doping on defect distributions of Cu2Zn(Sn x Ge1−x ) (S y Se1−y ) fabricated by nanocrystal ink deposition with selenization Photovoltaic Specialists Conference (PVSC), 38th IEEE, 3–8 June 2012, pp 001475–001480

  9. Sarswat PK, Free ML (2013) Enhanced photoelectrochemical response from copper antimony zinc sulfide thin films on transparent conducting electrode. Int J Photoenergy 2013:7. doi:10.1155/2013/154694

    Article  Google Scholar 

  10. Tsuyoshi M, Satoshi N, Takahiro W (2012) First-principles study on Cd doping in Cu2ZnSnS4 and Cu2ZnSnSe4 Japanese. J Appl Phys 51:10NC11

    Article  Google Scholar 

  11. Fernandes PA, Salomé PMP, da Cunha AF (2011) Study of polycrystalline Cu2ZnSnS4 films by Raman scattering. J Alloy Compd 509:7600–7606

    Article  Google Scholar 

  12. Dumcenco D, Huang Y-S (2013) The vibrational properties study of kesterite Cu2ZnSnS4 single crystals by using polarization dependent Raman spectroscopy. Opt Mater 35:419–425

    Article  Google Scholar 

  13. Burke BG, Chan J, Williams KA, Wu Z, Puretzky AA, Geohegan DB (2010) Study of Fano interference in p-type doped silicon. J Raman Spectrosc 41:1759–1764

    Article  Google Scholar 

  14. Kroner M, Govorov AO, Remi S, Biedermann B, Seidl S, Badolato A, Petroff PM, Zhang W, Barbour R, Gerardot BD, Warburton RJ, Karrai K (2008) The nonlinear Fano effect. Nature 451:311–314

    Article  Google Scholar 

  15. Fano U (1961) Effects of configuration interaction on intensities and phase shifts. Phys Rev 124:1866–1878

    Article  Google Scholar 

  16. Svidzinsky AA, Dorfman KE, Scully MO (2011) Enhancing photovoltaic power by Fano-induced coherence. Phys Rev A 84:053818

    Article  Google Scholar 

  17. Zhang Y, Chen X, Ouyang Z, Lu H, Jia B, Shi Z, Gu M (2013) Improved multicrystalline Si solar cells by light trapping from Al nanoparticle enhanced antireflection coating. Opt Mater Express 3:489–495

    Article  Google Scholar 

  18. Bellani V, Viña L, Hey R, Ploog K (1996) Modification of Fano resonances by resonant polaron coupling in bulk GaAs. Semicond Sci Technol 11:1411

    Article  Google Scholar 

  19. Li W, Jiang K, Zhang J, Chen X, Hu Z, Chen S, Sun L, Chu J (2012) Temperature dependence of phonon modes, dielectric functions, and interband electronic transitions in Cu2ZnSnS4 semiconductor films. Phys Chem Chem Phys 14:9936–9941

    Article  Google Scholar 

  20. Catlow CRA, Sokol AA, Walsh A (2013) Computational approaches to energy materials. Wiley, Chichester, pp 1–28

    Book  Google Scholar 

  21. Bhatia A (2013) Laser annealing and defect study of chalcogenide photovoltaic materials. Department of Materials Science and Engineering, University of Utah

  22. Hussain T, Gondal MA (2013) Laser induced breakdown spectroscopy (LIBS) as a rapid tool for material analysis. J Phys Conf Ser 439:012050

    Article  Google Scholar 

  23. Ramsteiner M, Wagner J, Ennen H, Maier M (1988) Resonance Raman scattering of Si local vibrational modes in GaAs. Phys Rev B 38:10669–10676

    Article  Google Scholar 

  24. McCluskey MD (2000) Local vibrational modes of impurities in semiconductors. J Appl Phys 87:3593–3617

    Article  Google Scholar 

  25. Roy S, Guha P, Kundu SN, Hanzawa H, Chaudhuri S, Pal AK (2002) Characterization of Cu(In, Ga)Se2 films by Raman scattering. Mater Chem Phys 73:24–30

    Article  Google Scholar 

  26. Fontané X, Izquierdo-Roca V, Saucedo E, Schorr S, Yukhymchuk VO, Valakh MYa, A Pérez-Rodríguez (2012) Vibrational properties of stannite and kesterite type compounds: Raman scattering analysis of Cu2(Fe,Zn)SnS4. J Alloy Compd 539:190–194

    Article  Google Scholar 

  27. Khare A, Himmetoglu B, Johnson M, Norris DJ, Cococcioni M, Aydil ES (2012) Calculation of the lattice dynamics and Raman spectra of copper zinc tin chalcogenides and comparison to experiments. J Appl Phys 111. doi:10.1063/1.4704191

  28. Romcevic N, Popovic ZV, Khokhlov DR (1995) Raman scattering spectra of indium-doped PbTe. J Phys Condens Matter 7:5105

    Article  Google Scholar 

  29. Broser I, Kaczmarczyk G, Thurian P, Heitz R, Hoffmann A (1996) Local vibrational modes of the CuO4-cluster in ZnO. J Cryst Growth 159:889–892

    Article  Google Scholar 

  30. Haller EE (2005) Isotopically controlled semiconductors. Solid State Commun 133:693–707

    Article  Google Scholar 

  31. Sundius T (2002) Scaling of ab initio force fields by MOLVIB. Vib Spectrosc 29:89–95

    Article  Google Scholar 

  32. Kalescky R, Zou W, Kraka E, Cremer D (2012) Local vibrational modes of the water dimer—comparison of theory and experiment. Chem Phys Lett 554:243–247

    Article  Google Scholar 

  33. Postnikov AV, Pagès O, Hugel J (2005) Lattice dynamics of the mixed semiconductors (Be,Zn)Se from first-principles calculations. Phys Rev B 71:115206

    Article  Google Scholar 

  34. Samanta K, Arora AK, Katiyar RS (2012) Local vibrational modes and Fano interaction in p-type ZnO: Sb system. J Phys D Appl Phys 45:185304

    Article  Google Scholar 

  35. Lemonnier JC, Thomas J, Robin S (1973) Optical properties and electronic structure of antimony in the energy range 2.5–14.5 eV. J Phys C 6:3205

    Article  Google Scholar 

  36. Sarswat PK, Free ML, Tiwari A (2011) Temperature-dependent study of the Raman A mode of Cu2ZnSnS4 thin films. Phys Status Solidi (b) 248:2170–2174

    Google Scholar 

  37. Kumar R, Shukla A, Mavi H, Vankar V (2008) Size-dependent Fano interaction in the laser-etched silicon nanostructures. Nanoscale Res Lett 3:105–108

    Article  Google Scholar 

  38. Casiraghi C, Pisana S, Novoselov KS, Geim AK, Ferrari AC (2007) Raman fingerprint of charged impurities in graphene. Appl Phys Lett 91:233108

    Article  Google Scholar 

  39. Scragg JJS, Choubrac L, Lafond A, Ericson T, Platzer-Björkman C (2014) A low-temperature order-disorder transition in Cu2ZnSnS4 thin films. Appl Phys Lett 104:041911

    Article  Google Scholar 

  40. Yuan M, Mitzi DB, Liu W, Kellock AJ, Chey SJ, Deline VR (2009) Optimization of CIGS based PV device through antimony doping. Chem Mater 22:285–287

    Article  Google Scholar 

  41. http://meetings.aps.org/link/BAPS.2014.MAR.F24.1. Accessed 07 Nov 2014

Download references

Acknowledgements

The authors want to thank JPK Instruments AG (Germany) and Asylum Research (USA) staff members for their help to acquire AFM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashant K. Sarswat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarswat, P.K., Free, M.L. The effects of dopant impurities on Cu2ZnSnS4 system Raman properties. J Mater Sci 50, 1613–1623 (2015). https://doi.org/10.1007/s10853-014-8722-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8722-1

Keywords

Navigation