Skip to main content
Log in

Microstructural design of neodymium-doped lanthanum–magnesium hexaaluminate synthesized by aqueous sol–gel process

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Aqueous sol–gel processing was used to synthesize neodymium-doped magnesium hexaaluminate (La1−x Nd x MgAl11O19; x = 0, 0.3, 0.4, 0.5) ceramic powder and subsequently calcined at 1450 and 1600 °C for 2 h. Randomly grown platelets of lanthanum–magnesium hexaaluminate formed a porous interlocking structure. Presence of various percentages of neodymium oxide significantly modifies the porous interlocking microstructure into self-reinforced, card-house-like microstructure. Platelets of rare earth-rich magnesium hexaaluminate were grown preferentially more than the stoichiometric rare earth magnesium hexaaluminate at elevated temperature greater than 1450 °C. Rare earth-rich magnesium hexaaluminate platelets form the skeleton of a card-house structure and the tiny platelets of stoichiometric rare earth magnesium hexaaluminate fill the house. The specific heat capacities, micro-hardness, and fracture toughness were studied in details.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Miller RA (1987) Current status of thermal barrier coatings—an overview. Surf Coat Technol 30(1):1–11

    Article  Google Scholar 

  2. Padture NP, Gell M, Jordan EH (2002) Thermal barrier coatings for gas-turbine engine applications. Science 296(5566):280–284

    Article  Google Scholar 

  3. Levi CG (2004) Emerging materials and processes for thermal barrier systems. Curr Opin Solid State Mater Sci 8(1):77–91

    Article  Google Scholar 

  4. Vassen R, Jarligo MO, Steinke T, Mack DE, Stover D (2010) Overview on advanced thermal barrier coatings. Surf Coat Technol 205(4):938–942

    Article  Google Scholar 

  5. Clarke DR, Phillpot SR (2005) Thermal barrier coating materials. Mater Today 8(6):22–29

    Article  Google Scholar 

  6. Cao XQ, Zhang YF, Zhang JF, Zhong XH, Wang Y, Ma HM, Xu ZH, He LM, Lu F (2008) Failure of the plasma-sprayed coating of lanthanum hexaluminate. J Eur Ceram Soc 28(10):1979–1986

    Article  Google Scholar 

  7. Cao XQ, Vassen R, Stoever D (2004) Ceramic materials for thermal barrier coatings. J Eur Ceram Soc 24(1):1–10

    Article  Google Scholar 

  8. Azzopardi A, Mevrel R, Saint-Ramond B, Olson E, Stiller K (2004) Influence of aging on structure and thermal conductivity of Y-PSZ and Y-FSZ EB-PVD coatings. Surf Coat Technol 177–178:131–139

    Article  Google Scholar 

  9. Clarke DR (2003) Materials selection guidelines for low thermal conductivity thermal barrier coatings. Surf Coat Technol 163–164:67–74

    Article  Google Scholar 

  10. Vassen R, Cao X, Tietz F, Basu D, Stover D (2000) Zirconates as New Materials for Thermal Barrier Coatings. J Am Ceram Soc 83(8):2023–2028. doi:10.1111/j.1151-2916.2000.tb01506.x

    Article  Google Scholar 

  11. Gadow R, Lischka M (2002) Lanthanum hexaaluminate—novel thermal barrier coatings for gas turbine applications - materials and process development. Surf Coat Technol 151–152:392–399

    Article  Google Scholar 

  12. Friedrich C, Gadow R, Schirmer T (2001) Lanthanum hexaaluminate—a new material for atmospheric plasma spraying of advanced thermal barrier coatings. J Therm Spray Technol 10(4):592–598. doi:10.1361/105996301770349105

    Article  Google Scholar 

  13. Choi SR, Bansal NP, Zhu D (2008) Mechanical and thermal properties of advanced oxide materials for higher-temperature coatings applications. In: Advances in ceramic coatings and ceramic-metal systems: ceramic engineering and science proceedings. Wiley, pp 11–19. doi:10.1002/9780470291238.ch2

  14. Cao XQ, Vassen R, Jungen W, Schwartz S, Tietz F, Stover D (2001) Thermal stability of lanthanum zirconate plasma-sprayed coating. J Am Ceram Soc 84(9):2086–2090. doi:10.1111/j.1151-2916.2001.tb00962.x

    Article  Google Scholar 

  15. Bansal NP, Zhu D (2008) Thermal properties of oxides with magnetoplumbite structure for advanced thermal barrier coatings. Surf Coat Technol 202(12):2698–2703

    Article  Google Scholar 

  16. Chen X, Zhang Y, Zhong X, Xu Z, Zhang J, Cheng Y, Zhao Y, Liu Y, Fan X, Wang Y, Ma H, Cao X (2010) Thermal cycling behaviors of the plasma sprayed thermal barrier coatings of hexaluminates with magnetoplumbite structure. J Eur Ceram Soc 30(7):1649–1657

    Article  Google Scholar 

  17. Negahdari Z, Willert-Porada M, Scherm F (2010) Thermal properties of homogenous lanthanum hexaaluminate/alumina composite ceramics. J Eur Ceram Soc 30(15):3103–3109

    Article  Google Scholar 

  18. Zhu D, Fox DS, Bansal NP, Miller RA (2004) Advanced oxide material systems for 1650°C thermal/environmental barrier coating applications. NASA/TM—2004-213219. National Aeronautics and Space Administration, Washington

  19. Dudkin BN, Bugaeva AY, Zainullin GG, Filippov VN (2004) The effect of yttrium oxide on the microstructure and properties of ceramics based on lanthanum hexaaluminate synthesized by the sol–gel method. Refract Ind Ceram 45(1):31–35. doi:10.1023/b:refr.0000023348.19718.73

    Article  Google Scholar 

  20. Wang Y-H, Ouyang J-H, Liu Z-G (2009) Preparation and thermo-physical properties of La1−x Nd x MgAl11O19 (x = 0, 0.1, 0.2) ceramics. J Alloys Compd 485(1–2):734–738

    Article  Google Scholar 

  21. Wang Y-H, Liu Z-G, Ouyang J-H, Liu H-Z, Zhu R-X (2011) Preparation and thermophysical properties of LaMgAl11O19-Yb3Al5O12 ceramic composites. Ceram Int 37(7):2489–2493

    Article  Google Scholar 

  22. Wang Y-H, Ouyang J-H, Liu Z-G (2010) Influence of dysprosium oxide doping on thermophysical properties of LaMgAl11O19 ceramics. Mater Des 31(7):3353–3357

    Article  Google Scholar 

  23. Barrera-Solano C, Esquivias L, Messing GL (1999) Effect of preparation conditions on phase formation, densification, and microstructure evolution in La-β-Al2O3/Al2O3 composites. J Am Ceram Soc 82(5):1318–1324. doi:10.1111/j.1151-2916.1999.tb01914.x

    Article  Google Scholar 

  24. Wu YQ, Zhang YF, Huang XX, Guo JK (2001) In-situ growth of needlelike LaAl11O18 for reinforcement of alumina composites. Ceram Int 27(8):903–906

    Article  Google Scholar 

  25. Jang BK, Kishi T (1998) Fabrication and microstructure of Al2O3 matrix composites by in situ reaction in the Al2O3–La2O3 system. J Ceram Soc Jpn 106(8):739–743

    Article  Google Scholar 

  26. Negahdari Z, Willert-Porada M (2010) Tailoring the microstructure of reaction-sintered alumina/lanthanum hexaaluminate particulate composites. J Eur Ceram Soc 30(6):1381–1389

    Article  Google Scholar 

  27. Wu Y-Q, Zhang Y-F, Wang S-W, Guo J-K (2001) In-situ synthesis of rodlike LaAl11O18 in Al2O3 powder by a coprecipitation method. J Eur Ceram Soc 21(7):919–923

    Article  Google Scholar 

  28. Zhu R-X, Liu Z-G, Ouyang J-H, Zhou Y (2013) Preparation and characterization of LnMgAl11O19 (Ln = La, Nd, Gd) ceramic powders. Ceram Int 39(8):8841–8846. doi:10.1016/j.ceramint.2013.04.073

    Article  Google Scholar 

  29. Teng F, Man Y, Liang S, Buergen G, Zhu Y, Han W, Xu P, Xiong G, Tian Z (2007) Crystal structure stability and catalytic activity of magnetoplumbite (MP) catalyst doped with Mn and Mg. J Non-Cryst Solids 353(52–54):4806–4812

  30. Rao RR, Mariappan L (2005) Combustion synthesis and characterisation of lanthanum hexa-aluminate. Adv Appl Ceram 104:268–271

  31. Cinibulk MK (1995) Synthesis and characterization of sol-gel derived lanthanum hexaluminate powders and films. J Mater Res 10(1):71–76

    Article  Google Scholar 

  32. Ropp RC, Carroll B (1980) Solid-state kinetics of LaAl11O18. J Am Ceram Soc 63(7–8):416–419. doi:10.1111/j.1151-2916.1980.tb10203.x

    Article  Google Scholar 

  33. Anstis GR, Chantikul P, Lawn BR, Marshall DB (1981) A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements. J Am Ceram Soc 64(9):533–538. doi:10.1111/j.1151-2916.1981.tb10320.x

    Article  Google Scholar 

  34. Gobichon A-E, Auffrdic J-P, Lour D (1996) Thermal decomposition of neutral and basic lanthanum nitrates studied with temperature-dependent powder diffraction and thermogravimetric analysis. Solid State Ionics 93(1–2):51–64

    Article  Google Scholar 

  35. Jia PY, Yu M, Lin J (2005) Sol-gel deposition and luminescent properties of LaMgAl11O19:Ce3+/Tb3+ phosphor films. J Solid State Chem 178(9):2734–2740

    Article  Google Scholar 

  36. Kaya C, Butler EG (2002) Plastic forming and microstructural development of α-alumina ceramics from highly compacted green bodies using extrusion. J Eur Ceram Soc 22(12):1917–1926

    Article  Google Scholar 

  37. Zhang J, Zhong X, Cheng Y, Wang Y, Xu Z, Chen X, Ma H, Zhao Y, Cao X (2009) Thermal-shock resistance of LnMgAl11O19 (Ln = La, Nd, Sm, Gd) with magnetoplumbite structure. J Alloys Compd 482(1–2):376–381

    Google Scholar 

  38. Rohrer GS (2004) Structure and bonding in crystalline materials. Cambridge University Press, Cambridge

    Google Scholar 

  39. Priya GK, Padmaja P, Warrier K, Damodaran A, Aruldhas G (1997) Dehydroxylation and high temperature phase formation in sol-gel boehmite characterized by Fourier transform infrared spectroscopy. J Mater Sci Lett 16(19):1584–1587. doi:10.1023/a:1018568418302

    Article  Google Scholar 

  40. Singh V, Chakradhar RPS, Rao JL, Kwak HY (2011) Enhanced blue emission and EPR study of LaMgAl11O19:Eu phosphors. J Lumin 131(2):247–252

    Article  Google Scholar 

  41. Zhan G, Yu J-x, Xu Z-g, Zhou F, Chi R-a (2012) Kinetics of thermal decomposition of lanthanum oxalate hydrate. Trans Nonferrous Met Soc 22:925–934

    Article  Google Scholar 

  42. Getman E, Loboda S, Tkachenko T, Ignatov A (2005) Substitution of calcium with neodymium and dysprosium in hydroxyapatite structure. Funct. Mater 12(1):6–10

    Google Scholar 

  43. Rice RW, Wu CC, Boichelt F (1994) Hardness–Grain-size relations in ceramics. J Am Ceram Soc 77(10):2539–2553. doi:10.1111/j.1151-2916.1994.tb04641.x

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank M/s. Carborundum Universal Limited, India for sponsoring this research work. Technical staffs of Central Research Facility (CRF) of Indian Institute of Technology, Kharagpur and Sophisticated Analysis and Instrument Facility (SAIF), Cochin are sincerely acknowledged for their extended support during SEM, FTIR, and XRD analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Jana.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 622 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jana, P., Jayan, P.S., Mandal, S. et al. Microstructural design of neodymium-doped lanthanum–magnesium hexaaluminate synthesized by aqueous sol–gel process. J Mater Sci 50, 344–353 (2015). https://doi.org/10.1007/s10853-014-8593-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8593-5

Keywords

Navigation