Skip to main content
Log in

Cheaper membrane materials for microalgae dewatering

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Among different strategies to reduce costs in microalgae dewatering process via cross-flow filtration, the one related to membrane material was investigated in order to be decreased. Several materials were tested, starting with the ones commonly used in membrane technology [ceramic, polysulfone (PSf) and polyacrylonitrile (PAN)] to the ones generally employed in packaging industry [acrylonitrile butadiene styrene (ABS), glycol-modified polyethylene terephthalate (PETG) and polylactic acid (PLA)], the latter being considerably cheaper. Experiments carried out showed promising results in terms of permeabilities for PSf–Pluronic® F127 blended membranes and PAN membranes (11 ± 1 L/h/m2/bar and 22 ± 1 L/h/m2/bar, respectively, instead of 2 ± 2 L/h/m2/bar of PSf membranes), but with high related costs. PLA membranes showed good mechanical properties, biodegradability and price, but low permeability values (5 ± 1 L/h/m2/bar). PETG membranes showed attractive results in terms of costs and permeability, but poor mechanical properties. The polymer that offered the best results was the ABS that reached membrane permeabilities of 19 ± 1 L/h/m2/bar, maintaining good mechanical properties while filtering the microalgae Phaeodactylum tricornutum Bohlin. Thus, a novel functionality was found for these not so common polymers in microalgae dewatering. This indicates that use of these materials could also be considered in other aqueous micro/ultrafiltration applications. In addition, the biodegradable PLA polymer introduces a new concept of cheap and environmental friendly membrane in this application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Šoštarič M, Klinar D, Bricelj M, Golob J, Berovič M, Likozar B (2012) Growth, lipid extraction and thermal degradation of the microalga Chlorella vulgaris. N Biotechnol 29:325–331

    Article  Google Scholar 

  2. Wiley PE, Campbell JE, McKuin B (2011) Production of biodiesel and biogas from algae: a review of process train options. Water Environ Res 83:326–338

    Article  Google Scholar 

  3. Li Y, Horsman M, Wu N, Lan CQ, Dubois-Calero N (2008) Biofuels from microalgae. Biotechnol Prog 24:815–820

    Google Scholar 

  4. Amaro HM, Guedes AC, Malcata FX (2011) Advances and perspectives in using microalgae to produce biodiesel. Appl Energ 88:3402–3410

    Article  Google Scholar 

  5. Singh B, Guldhe A, Rawat I, Bux F (2014) Towards a sustainable approach for development of biodiesel from plant and microalgae. Renew Sust Energ Rev 29:216–245

    Article  Google Scholar 

  6. Schenk P, Thomas-Hall S, Stephens E et al (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenerg Res 1:20–43

    Article  Google Scholar 

  7. Williams PJLB, Laurens LML (2010) Microalgae as biodiesel & biomass feedstocks: review & analysis of the biochemistry, energetics & economics. Energy Environ Sci 3:554–590

    Article  Google Scholar 

  8. Rawat I, Ranjith Kumar R, Mutanda T, Bux F (2013) Biodiesel from microalgae: a critical evaluation from laboratory to large scale production. Appl Energ 103:444–467

    Article  Google Scholar 

  9. Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14:557–577

    Article  Google Scholar 

  10. Hu Y-R, Wang F, Wang S-K, Liu C-Z, Guo C (2013) Efficient harvesting of marine microalgae Nannochloropsis maritima using magnetic nanoparticles. Bioresour Technol 138:387–390

    Article  Google Scholar 

  11. Nurra C, Clavero E, Salvadó J, Torras C (2014) Vibrating membrane filtration as improved technology for microalgae dewatering. Bioresour Technol 157:247–253

    Article  Google Scholar 

  12. Nurra C, Torras C, Clavero E et al (2014) Biorefinery concept in a microalgae pilot plant. Culturing, dynamic filtration and steam explosion fractionation. Bioresour Technol 163:136–142

    Article  Google Scholar 

  13. Likozar B, Levec J (2014) Effect of process conditions on equilibrium, reaction kinetics and mass transfer for triglyceride transesterification to biodiesel: experimental and modeling based on fatty acid composition. Fuel Process Technol 122:30–41

    Article  Google Scholar 

  14. Klofutar B, Golob J, Likozar B, Klofutar C, Žagar E, Poljanšek I (2010) The transesterification of rapeseed and waste sunflower oils: mass-transfer and kinetics in a laboratory batch reactor and in an industrial-scale reactor/separator setup. Bioresour Technol 101:3333–3344

    Article  Google Scholar 

  15. Zhang X, Hu Q, Sommerfeld M, Puruhito E, Chen Y (2010) Harvesting algal biomass for biofuels using ultrafiltration membranes. Bioresour Technol 101:5297–5304

    Article  Google Scholar 

  16. Hung MT, Liu JC (2006) Microfiltration for separation of green algae from water. Colloids Surf B 51:157–164

    Article  Google Scholar 

  17. Kwon B, Park N, Cho J (2005) Effect of algae on fouling and efficiency of UF membranes. Desalination 179:203–214

    Article  Google Scholar 

  18. Rossi N, Jaouen P, Legentilhomme P, Petit I (2004) Harvesting of cyanobacterium Arthrospira platensis using organic filtration membranes. Food Bioprod Process 82:244–250

    Article  Google Scholar 

  19. Morineau-Thomas O, Jaouen P, Legentilhomme P (2002) The role of exopolysaccharides in fouling phenomenon during ultrafiltration of microalgae (Chlorella sp. and Porphyridium purpureum): advantage of a swirling decaying flow. Bioprocess Biosyst Eng 25:35–42

    Article  Google Scholar 

  20. Rios SD, Clavero E, Salvadó J, Farriol X, Torras C (2010) Dynamic microfiltration in microalgae harvesting for biodiesel production. Ind Eng Chem Res 50:2455–2460

    Article  Google Scholar 

  21. Scharnagl N, Buschatz H (2001) Polyacrylonitrile (PAN) membranes for ultra- and microfiltration. Desalination 139:191–198

    Article  Google Scholar 

  22. Yang S, Liu Z (2003) Preparation and characterization of polyacrylonitrile ultrafiltration membranes. J Membr Sci 222:87–98

    Article  Google Scholar 

  23. Lau WWY, Guiver MD, Matsuura T (1991) Phase separation in polysulfone/solvent/water and polyethersulfone/solvent/water systems. J Membr Sci 59:219–227

    Article  Google Scholar 

  24. Pitol L, Torras C, Avalos JB, Garcia-Valls R (2006) Modelling of polysulfone membrane formation by immersion precipitation. Desalination 200:427–428

    Article  Google Scholar 

  25. Yong SK, Hyo JK, Un YK (1987) Asymmetric membrane formation via immersion precipitation method. I. Kinetic effect. J Membr Sci 60:219–232

    Article  Google Scholar 

  26. Anadão P, Montes RR, Larocca NM, Pessan LA (2013) Influence of the clay content and the polysulfone molar mass on nanocomposite membrane properties. Appl Surf Sci 275:110–120

    Article  Google Scholar 

  27. Okano K, Tanaka T, Ogino C, Fukuda H, Kondo A (2010) Biotechnological production of enantiomeric pure lactic acid from renewable resources: recent achievements, perspectives, and limits. Appl Microbiol Biotechnol 85:413–423

    Article  Google Scholar 

  28. Gogolewski S, Jovanovic M, Perren SM, Dillon JG, Hughes MK (1993) Tissue response and in vivo degradation of selected polyhydroxyacids: polylactides (PLA), poly(3-hydroxybutyrate) (PHB), and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB/VA). J Biomed Mater Res 27:1135–1148

    Article  Google Scholar 

  29. Luciano RM, Zavaglia CAC, Duek EAR, Alberto-Rincon MC (2003) Synthesis and characterization of poly(l-lactic acid) membranes: studies in vivo and in vitro. J Mater Sci Mater Med 14:87–94

    Article  Google Scholar 

  30. Aslan S, Calandrelli L, Laurienzo P, Malinconico M, Migliaresi C (2000) Poly(d, l-lactic acid)/poly(ε-caprolactone) blend membranes: preparation and morphological characterisation. J Mater Sci 35:1615–1622. doi:10.1023/A:1004787326273

    Article  Google Scholar 

  31. Williams JM, Bartos JJ III, Wilkerson MH (1990) Elastic modulus dependence on density for polymeric foams with systematically changing microstructures. J Mater Sci 25:5134–5141. doi:10.1007/BF00580141

    Article  Google Scholar 

  32. Torras C, Ferrando F, Paltakari J, Garcia-Valls R (2006) Performance, morphology and tensile characterization of activated carbon composite membranes for the synthesis of enzyme membrane reactors. J Membr Sci 282:149–161

    Article  Google Scholar 

  33. Balanyà MP (2009) Preparació i caracterització de compostos de PLA (àcid polilàctic). PhD dissertation

  34. Sanaeepur H, Ebadi Amooghin A, Moghadassi A, Kargari A, Moradi S, Ghanbari D (2012) A novel acrylonitrile-butadiene-styrene/poly(ethylene glycol) membrane: preparation, characterization, and gas permeation study. Polym Adv Technol 23:1207–1218

    Article  Google Scholar 

  35. Boricha AG, Murthy ZVP (2009) Acrylonitrile butadiene styrene/chitosan blend membranes: preparation, characterization and performance for the separation of heavy metals. J Membr Sci 339:239–249

    Article  Google Scholar 

  36. Zhao W, Su Y, Li C, Shi Q, Ning X, Jiang Z (2008) Fabrication of antifouling polyethersulfone ultrafiltration membranes using Pluronic F127 as both surface modifier and pore-forming agent. J Membr Sci 318:405–412

    Article  Google Scholar 

  37. Alonso DL, Belarbi E-H, Fernández-Sevilla JM, Rodríguez-Ruiz J, Grima EM (2000) Acyl lipid composition variation related to culture age and nitrogen concentration in continuous culture of the microalga Phaeodactylum tricornutum. Phytochemistry 54:461–471

    Article  Google Scholar 

  38. Walne PR (1970) Studies on the food value of nineteen genera of algae to juvenile bivalves of the genera Ostrea, Crassostrea, Mercenaria, and Mytilus. Fish Investig 26:62

    Google Scholar 

  39. Strathmann H (1985) Materials science of synthetic membranes. American Chemical Society, Washington

    Google Scholar 

  40. Torras C, Zhang X, Garcia-Valls R, Benavente J (2007) Morphological, chemical surface and electrical characterizations of lignosulfonate-modified membranes. J Membr Sci 297:130–140

    Article  Google Scholar 

  41. Seidel A (2011) Properties and behavior of polymers, vol 2. Wiley, Hoboken 1590 pp

    Google Scholar 

  42. Ríos SD, Salvadó J, Farriol X, Torras C (2012) Antifouling microfiltration strategies to harvest microalgae for biofuel. Bioresour Technol 119:406–418

    Article  Google Scholar 

  43. Kawabata N, Ohashi K, Nishiyama T (2006) Releasing polyacrylonitrile from poor biodegradability by insertion of a highly biodegradable chemical structure into the main chain. J Appl Polym Sci 99:852–857

    Article  Google Scholar 

  44. Hwang T, Park S-J, Oh Y-K, Rashid N, Han J-I (2013) Harvesting of Chlorella sp. KR-1 using a cross-flow membrane filtration system equipped with an anti-fouling membrane. Bioresour Technol 139:379–382

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the projects ENE2011-22761 ‘Biorrefineria de microalgas: optimización de las etapas de cosechado y de obtención de lípidos’ funded by the Spanish Ministry of Science and Innovation, ‘Fuels from Biomass’ (research program funded by Excma. Diputació Tarragona) and ‘Demostración del cultivo y procesado de algas en sistemas semicerrados con fertilización carbónica en el entorno de la refinería de Repsol en Tarragona’, founded by Spanish Ministry of Science and Innovation (Plan E). The research was also supported by the European Regional Development Funds (ERDF, FEDER Programa Competitividad de Catalunya 2007–2013). Authors specially acknowledge AIMPLAS (Plastics Technology Centre, Paterna, Valencia) for kindly donating PLA pellets. The authors are indebted to Maria Pilar Rey Varela and Scientific Research Services of Universitat Rovira i Virgili for their contribution in the analytic work. C. Nurra is grateful to the Catalonia Institute for Energy Research (IREC) for her PhD scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carles Torras.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nurra, C., Franco, E.A., Maspoch, M.L. et al. Cheaper membrane materials for microalgae dewatering. J Mater Sci 49, 7031–7039 (2014). https://doi.org/10.1007/s10853-014-8408-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8408-8

Keywords

Navigation