Skip to main content
Log in

Magnetic and dielectric properties of metamagnetic TbCo0.5Mn0.5O3.07 ceramics

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The ceramic TbCo0.5Mn0.5O3.07 of double-perovskite structure was prepared by solid-state reaction. Its crystal structure and magnetic and dielectric properties were investigated by first-principles calculations and experimental observations. TbCo0.5Mn0.5O3.07 possesses a monoclinic structure with P21/n space group. The c axis is the easy-magnetization axis, and it is largely caused by Co2+ anisotropy. The predominant valence states are Mn4+ and Co2+, with a small amount of Co3+ coexisting with Co2+. The ordering of Mn4+ and Co2+ results in ferromagnetic Mn4+–Co2+ interactions. Partial disorder of the B-site creates antiferromagnetic Co2+–O–Co2+ or Mn4+–O–Mn4+ interactions. The origin of metamagnetism is associated with the coexistence of antiferromagnetic and ferromagnetic phases. The magnetic exchange bias is strongly dependent on magnetic field, which is considered to be related to the metamagnetic behavior. The possibility of spin glass behavior is excluded by AC susceptibility measurements. The two observed dielectric relaxations are caused by electrons hopping between Co2+ and Mn4+ and between Co3+ and Mn4+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Eerenstein W, Mathur ND, Scott JF (2006) Multiferroic and magnetoelectric materials. Nature (London) 442:759–765

    Article  Google Scholar 

  2. Neurgaonkar RR, Santh I, Oliver JR, Wu ET, Cross LE (1990) Growth of perovskite PZT and PLZT thin films. J Mater Sci 25:2053. doi:10.1007/BF01045763.pdf

    Article  Google Scholar 

  3. Lin YQ, Chen XM, Liu XQ (2009) Relaxor-like dielectric behavior in La2NiMnO6 double perovskite ceramics. Solid State Commun 149:784–787

    Article  Google Scholar 

  4. Krichevtsov BB, Pavlov VV, Pisarev RV (1989) Giant linear magnetoelectric effect in garnet ferrite films. JETP Lett 49:535–539

    Google Scholar 

  5. Tellier CR (1987) Surface roughness and transverse magnetic field dependence of the Hall coefficient and the magnetoresistance in thin metal films. J Mater Sci 22:2906. doi:10.1007/BF01086489.pdf

    Article  Google Scholar 

  6. Larrégola SA, Alonso JA, Sheptyakov D, Algueró M, Muñoz A, Pomjakushin V, Pedregosa JC (2010) An original polymorph sequence in the high-temperature evolution of the perovskite Pb2TmSbO6. J Am Chem Soc 132:14470–14480

    Article  Google Scholar 

  7. Sharma G, Saha J, Kaushik SD, Siruguri V, Patnaik S (2013) Magnetism driven ferroelectricity above liquid nitrogen temperature Y2CoMnO6. Appl Phys Lett 103:012903

    Article  Google Scholar 

  8. Azuma M, Tajata K, Saito T, Ishiwata S, Shimakawa Y, Takano M (2005) Designed ferromagnetic, ferroelectric Bi2NiMnO6. J Am Chem Soc 127:8889–8892

    Article  Google Scholar 

  9. Zhu M, Lin Y, Lo EWC, Wang Q, Zhao ZJ, Xie WH (2012) Electronic and magnetic properties of La2NiMnO6 and La2CoMnO6 with ordering. Appl Phys Lett 100:062406

    Article  Google Scholar 

  10. Chatterji T, Frick B, Nair HS (2012) Magnetic ordering in double perovskites R2CoMnO6 (R = Y, Tb) investigated by high resolution neutron spectroscopy. J Phys 24:266005

    Google Scholar 

  11. Singh MP, Truong KD, Fournier P (2007) Magnetodielectric effect in double perovskite La2CoMnO6 thin films. Appl Phys Lett 91:042504

    Article  Google Scholar 

  12. Troyanchuk IO, Samsonenko NV, Kasper NV, Szymczak H, Nabialek A (1997) Magnetic ordering in perovskites containing manganese and cobalt. J Phys 9:8287–8295

    Google Scholar 

  13. Asish K, Kundu V, Pralong B, Raveau J, Caignert V (2011) Magnetic and electrical properties of ordered 112-type perovskite LnBaCoMn3-δ (Ln = Nd, Eu). J Mater Sci 46:681. doi:10.1007/s10853-010-4791-y.pdf

    Article  Google Scholar 

  14. Khomchenko VA, Troyanchuk IO, Sazonov AP, Sikolenko VV, Szymczak H, Szymczak R (2006) Metamagnetic behavior in TbCo0.5Mn0.5O3.07 perovskite. J Phys 18:9541–9548

    Google Scholar 

  15. Truong KD, Singh MP, Jandl S, Fournier P (2011) Investigation of phonon behavior in Pr2NiMnO6 by micro-Raman spectroscopy. J Phys 23:052202

    Google Scholar 

  16. Troyanchuk IO, Khalyavin DD, Lynn JW, Erwin RW, Huang Q, Szymczak H, Szymczak R, Baran M (2000) Magnetic phase diagrams of the Ln (Mn1−x Co x ) O3 (Ln = Eu,  Nd,  Y) systems. J Appl Phys 88:360

    Article  Google Scholar 

  17. Vasiliev AN, Volkova OS, Lobanovskii LS, Troyanchuk IO, Hu Z, Tjeng LH, Khomskii DI, Lin HJ, Chen CT, Tristan N, Kretzschmar F, Klingeler R, Büchner B (2008) Valence states and metamagnetic phase transition in partially B-site-disorder EuMn0.5Co0.5O3.0. Phys Rev B 77:104442

    Article  Google Scholar 

  18. Dass RI, Goodenough JB (2003) Multiple magnetic phases of La2CoMnO6−δ (0 ≤ δ≤0.05). Phys Rev B 67:014401

    Article  Google Scholar 

  19. Cornejo DR, Peixoto RF, Reboth PF, Fichtner PFP, Franco VCD, Villas-Boas V, Missell FP (2010) First-order-reversal-curve analysis of Pr–Fe–B-based exchange spring magnets. J Mater Sci 45:5077. doi:10.1007/s10853-010-4353-3.pdf

    Article  Google Scholar 

  20. Lan CY, Jiang YW, Yang SG (2011) Magnetic properties of La and (La, Zr) doped BiFeO3 ceramics. J Mater Sci 46:734. doi:10.1007/s10853-010-4805-9.pdf

    Article  Google Scholar 

  21. Bahout MM, Roisnel T, Bourée F, André G, Moure C, Peña O (2007) Cation distribution and ferromagnetic exchange in the YMn0.5Co0.5O3 perovskite investigated by neutron powder diffraction. J Phys Chem Solids 180:1737–1742

    Google Scholar 

  22. Bahout MM, Roisnel T, Bourée F, André G, Moure C, Peña O (2007) Neutron diffraction evidence for a cationic order in the REMn0.5Ni0.5O3 (RE = La, Nd) and YMn0.5Co0.5O3 perovskites. Prog Solid State Chem 35:257–264

    Article  Google Scholar 

  23. Zhou JS, Yin HQ, Goodenough JB (2001) Vibronic superexchange in single-crystal LaMn1−x Ga x O3. Phys Rev B 63:184423

    Article  Google Scholar 

  24. Sati P, Hayn R, Kuzian R, Régnier S, Schäfer S, Stepanov A, Morhain C, Deparis C, Laügt M, Goiran M, Golacki Z (2006) Magnetic anisotropy of Co2+ as signature of intrinsic ferromagnetism in ZnO:Co. Phys Rev Lett 96:017203

    Article  Google Scholar 

  25. Venkatesan M, Fitzgerald CB, Lunney JG, Coey JMD (2004) Anisotropic ferromagnetism in substituted zinc oxide. Phys Rev Lett 93:177206

    Article  Google Scholar 

  26. Wang XL, James M, Horvat J, Gao F, Li AH, Liu HK, Dou SX (2002) Structure and spin glass behavior in non-metallic Yb2CoMnO6 perovskite manganite. J Magn Magn Mater 246:86–92

    Article  Google Scholar 

  27. Ganeshraj C, Pradheesh R, Santhosh PN (2012) Structural, magnetic, transport and magnetocaloric properties of metamagnetic DyMn0.5Co0.5O3. J Appl Phys 111:07A914

    Article  Google Scholar 

  28. Su J, Lu XM, Liu YY, Zhang JT, Li GR, Ruan XZ, Huang FZ, Du J, Zhu JS (2012) Multiferroicity in 0.7Pb(Zr0.52Ti0.48)O3–0.3Pb(Ni1/3Nb2/3)O3 ceramics. Appl Phys Lett 100:102905

    Article  Google Scholar 

  29. Molak A, Paluch M, Pawlus S, Klimontko J, Ujma Z, Gruszka I (2008) Electric modulus approach to the analysis of electric relaxation in highly conducting (Na0.75Bi0.25) (Mn0.25Nb0.75) O3 ceramics. J Phys D 38:1450–1460

    Article  Google Scholar 

  30. Lin YQ, Chen XM (2011) Dielectric, ferromagnetic characteristics, and room-temperature magnetodielectric effects in double perovskite La2CoMnO6 ceramics. J Am Ceram Soc 94:782–787

    Article  Google Scholar 

  31. Rado GT, Ferrari JM, Maisch WG (1984) Magnetoelectric susceptibility and magnetic symmetry of magnetoelectrically annealed TbPO4. Phys Rev B 29:4041–4048

    Article  Google Scholar 

  32. Subramanian MA, He T, Chen JZ, Rogado NS, Calvarese TG, Sleight AW (2006) Giant room-temperature magnetodielectric response in the electronic ferroelectric LuFe2O4. Adv Mater 18:1737–1739

    Article  Google Scholar 

  33. Tang MH, Xiao YG, Jiang B, Hou JW, Li JC, He J (2011) The giant dielectric tunability effect in bulk Y2NiMnO6 around room temperature. Appl Phys A 105:679–683

    Article  Google Scholar 

  34. Cai ZH, Kubicek M, Fleig J, Yildiz B (2012) Chemical heterogeneities on La0.6Sr0.4CoO3−δ thin films—correlations to cathode surface activity and stability. Chem Mater 24:1116–1127

    Article  Google Scholar 

  35. Vaz CAF, Prabhakaran D, Altman EI, Henrich VE (2009) Experimental study of the interfacial cobalt oxide in Co3O4/α-Al2O3 (0001) epitaxial films. Phys Rev B 80:155457

    Article  Google Scholar 

Download references

Acknowledgements

Computer resources provided by the High Performance Computing Center of Nanjing University are gratefully acknowledged. This work was supported by the State Key Program for Basic Researches of China under Grant No. 2009CB929501, the National Science Foundation of China (Nos. 11374169, 61271078, 51225201 and 11174166), the Distinguished Middle-aged and Young Scientist Encourage and Reward Foundation of Shandong Province, China (No. BS2013CL006), the Taishan Scholars Program of Shandong Province, the Fundamental Research Funds for the Central Universities, the Priority Academic Program Development of Jiangsu Higher Education Institutions, and the Natural Science Research Project for Universities from the Education Department of Anhui Province (KJ2008B113ZC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Su, X. M. Lu or J. S. Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, J., Zhang, J.T., Lu, X.M. et al. Magnetic and dielectric properties of metamagnetic TbCo0.5Mn0.5O3.07 ceramics. J Mater Sci 49, 3681–3686 (2014). https://doi.org/10.1007/s10853-014-8076-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8076-8

Keywords

Navigation