Skip to main content
Log in

Structure–properties relationship in single polymer composites based on polyamide 6 prepared by in-mold anionic polymerization

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Single polymer composites (SPCs) based on polyamide 6 (PA6) were prepared by in-mold activated anionic ring-opening polymerization (AAROP) of caprolactam in the presence of PA6 textile fibers. The influence of the reinforcing fibers content, their surface treatment, as well as of the temperature of AAROP upon the morphology, crystalline structure, and mechanical properties of the resulting SPCs was followed. The presence of oriented transcrystalline layer (TCL) on the surface of the reinforcing fibers was demonstrated by means of microscopy methods. Its orientation and polymorph structure were determined by synchrotron wide-angle X-ray scattering. Studies on the mechanical behavior in tension of the SPCs showed a well-expressed growth of the stress at break (70–80 %) and deformation at break (up to 150–190 %) in composites with 15–20 wt% of reinforcements. The best mechanical properties were found in SPCs whose reinforcing fibers were solvent-pretreated prior to AAROP in order to remove the original finish. In these samples a stronger adhesion at the fiber/matrix interface was proved by scanning electron microscopy of cryofractured samples. This effect was related to a thinner TCL in which the α-to-γ polymorph transition is impeded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Matabola KP, de Vries AR, Moolman FS, Luyt AS (2009) J Mater Sci 2009(44):6213. doi:10.1007/s10853-009-3792-1

    Article  Google Scholar 

  2. Fakirov S (2013) Macromol Mater Eng 298:9

    Article  CAS  Google Scholar 

  3. Banik K, Abraham TN, Karger-Kocsis J (2007) Macromol Mater Eng 292:1280

    Article  CAS  Google Scholar 

  4. Poulakis JG, Varelidis PC, Papaspyrides CD (1997) Adv Polym Technol 16:313

    Article  CAS  Google Scholar 

  5. Raghavendran VK, Drzal LT (2002) J Adhes 78:895

    Article  CAS  Google Scholar 

  6. Capiati NJ, Porter RS (1975) J Mater Sci 10:1671. doi:10.1007/BF00554928

    Article  CAS  Google Scholar 

  7. Ward IM, Hine PJ (2004) Polymer 45:1413

    Article  CAS  Google Scholar 

  8. Hine PJ, Ward IM (2005) In: Michler GH, Baltá-Calleja FJ (eds) Mechanical properties of polymers based on nanostructure and morphology. CRC, Boca Raton, p 683

    Google Scholar 

  9. Barkoula NM, Peijs T, Schimanski T, Loos J (2005) Polym Compos 26:114

    Article  CAS  Google Scholar 

  10. Hine PJ, Ward IM (2006) J Appl Polym Sci 101:991

    Article  CAS  Google Scholar 

  11. Barany T, Karger-Kocsis A, Czigany T (2006) Polym Adv Technol 17:818

    Article  CAS  Google Scholar 

  12. Hine PJ, Ey RH, Ward IM (2008) Compos Sci Technol 68:1413

    Article  CAS  Google Scholar 

  13. Abraham TN, Wanjale SD, Barany T, Karger-Kocsis J (2009) Compos A 40:662

    Article  Google Scholar 

  14. Jenkins MJ, Hine PJ, Hay JN, Ward IM (2006) J Appl Polym Sci 99:2789

    Article  CAS  Google Scholar 

  15. Li RH, Yao DG (2008) J Appl Polym Sci 107:2909

    Article  CAS  Google Scholar 

  16. Bhattacharyya D, Maitrot P, Fakirov S (2009) Express Polym Lett 3:525

    Article  CAS  Google Scholar 

  17. Gong Y, Yang G (2010) J Appl Polym Sci 118:3357

    Article  CAS  Google Scholar 

  18. Lacroix FV, Lu H, Schulte K (1999) Compos A 30:369

    Article  Google Scholar 

  19. van Rijswijk K, Bersee HEN (2007) Compos A 38:666

    Article  Google Scholar 

  20. Roda J (2009) In: Dubois P, Coulembier OJ-M, Raquez J-M (eds) Handbook of ring-opening polymerization. Wiley-VCH, Wencheim, p 165

    Chapter  Google Scholar 

  21. Brunelle DJ, Bradt JE, Serth-Guzzo J, Takekoshi T, Evans TL, Pearce E, Wilson P (1998) Macromolecules 31:4782

    Article  CAS  Google Scholar 

  22. Brunelle DJ, Krabbenhoft HO, Bonauto DK (1993) Polym Preprints USA 34:73

    CAS  Google Scholar 

  23. Gong Y, Liu A, Yang G (2010) Compos A 41:1006

    Article  Google Scholar 

  24. Gong Y, Yang G (2010) J Mater Sci 45:5237. doi:10.1007/s10853-010-4565-6

    Article  CAS  Google Scholar 

  25. Wu B, Gong Y, Yang G (2011) J Mater Sci 46:5184. doi:10.1007/s10853-011-5452-5

    Article  CAS  Google Scholar 

  26. Dencheva N, Pouzada AS, Brito AM, Oliveira FM, Denchev Z, Costa PF, Semiautomatic laboratory equipment for reactive injection molding, preprints of the 5th polymers and mold innovation conference (PMI-2012), Gent, September 2012

  27. POLAR, version 2.7.3; Copyright (c) 1997–2008 by Stonybrook Technology and Applied Research, Inc, USA

  28. Veith CA, Cohen RE (1991) Makromol Chem Macromol Symp 42/43:241

    Article  CAS  Google Scholar 

  29. Dan F, Vasiliu-Oprea C (1998) Colloid Polym Sci 276:483

    Article  CAS  Google Scholar 

  30. Mateva R, Delev O (1995) Polym J 27:499

    Article  Google Scholar 

  31. Isada H, Bussi P (1991) Macromolecules 24:3569

    Article  Google Scholar 

  32. Stern T, Wachtel E, Marom GJ (1997) J Polym Sci 35:2429

    CAS  Google Scholar 

  33. Loos J, Schimanski T, Hofman J, Peijs T, Lemstra PJ (2001) Polymer 42:3827

    Article  CAS  Google Scholar 

  34. Quan H, Li Z-M, Yang M-B, Huang R (2005) Comp Sci Technol 65:999

    Article  CAS  Google Scholar 

  35. Nuriel H, Klein N, Marom G (1999) Compos Sci Technol 59:1685

    Article  CAS  Google Scholar 

  36. Dencheva N, Oliveira MJ, Carneiro OS, Pouzada AS, Denchev Z (2010) J Appl Polym Sci 115:2918

    Article  CAS  Google Scholar 

  37. Dencheva N, Denchev Z, Oliveira MJ, Funari SS (2010) Macromolecules 43:4715

    Article  CAS  Google Scholar 

  38. Somani RH, Hsiao BS, Nogales A, Srinivas S, Tsou AH, Sics I, Baltá-Calleja FJ, Ezquerra TA (2000) Macromolecules 33:9385

    Article  CAS  Google Scholar 

  39. Nogales A, Hsiao BS, Somani RH, Srinivas S, Tsou AH, Balta-Calleja FJ, Ezquerra TA (2001) Polymer 42:5247

    Article  CAS  Google Scholar 

  40. Samon JM, Schultz JM, Hsiao BS (2000) Polymer 41:2169

    Article  CAS  Google Scholar 

  41. Dencheva N, Denchev Z, Oliveira MJ, Funari SS (2007) J Appl Polym Sci 103:2242

    Article  CAS  Google Scholar 

  42. Varlot LK, Reynaud E, Kloppfer MH, Vigier G, Varlet J (2001) J Polym Sci Part B 39:1360

    Article  CAS  Google Scholar 

  43. Lin L, Argon AS (1992) Macromolecules 25:4011

    Article  CAS  Google Scholar 

  44. Fornes TD, Paul DR (2003) Polymer 44:3945

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of HASYLAB at DESY (Grant Number II-07-011EC) and of the Strategic Project LA 25-2011-2012 financed by Fundação para a Ciênica e Tecnologia (FCT)—Portugal. N. D. is grateful to the FCT for supporting her research by the post-doctoral award SFRH/BPD/45252/2008, co-financed by QREN-POPH program of EU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zlatan Denchev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dencheva, N., Denchev, Z., Pouzada, A.S. et al. Structure–properties relationship in single polymer composites based on polyamide 6 prepared by in-mold anionic polymerization. J Mater Sci 48, 7260–7273 (2013). https://doi.org/10.1007/s10853-013-7546-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7546-8

Keywords

Navigation