Skip to main content

Advertisement

Log in

Room temperature hardness of gadolinia-doped ceria as a function of porosity

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Porous gadolina-doped ceria (Ce0.9Gd0.1O1.95, GDC10) is commonly used as a functional electrode support in solid oxide fuel cells, gas sensors, and gas separators. In addition, dense GDC10 is commonly used as a solid oxide fuel cell electrolyte and a gas separation membrane. Although, porosity affects a wide range of electrical, thermal, and mechanical properties of solids, this study focuses on (i) the Vickers indentation hardness, H, as a function of volume fraction porosity, P, ranging from 0.08 to 0.60 and (ii) the load dependence of H for Vickers indentation loads of 0.98–9.8 N. For the 13 GDC10 included in this study, the decrease in H with increasing P is approximated by the empirical relationship H = H 0 exp(−b H P), where H 0 = 5.844 GPa and b H  = 6.68. In addition, the H values were roughly independent of the applied load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yang L, Ning XS, Chen KX, Zhou HP (2007) Ceram Int 33:483

    Article  CAS  Google Scholar 

  2. Yang L, Ning XS, Xiao QF, Chen KX, Zhou HP (2007) J Biomed Mater Res B 81B:50

    Article  CAS  Google Scholar 

  3. Khattab RM, Wahsh MMS, Khalil NM (2012) Ceram Int 38:4723

    Article  CAS  Google Scholar 

  4. Dawicke JW, Blumenthal RN (1986) J Electrochem Soc 133:904

    Article  CAS  Google Scholar 

  5. Kale GM (2009) Adv Powder Technol 20:426

    Article  CAS  Google Scholar 

  6. Mahabole MP, Aiyer RC, Ramakrishna CV, Sreedhar B, Khairnar RS (2005) Mater Sci B 28:535

    Article  CAS  Google Scholar 

  7. Twigg MV, Richardson JT (2007) Ind Eng Chem Res 46:4166

    Article  CAS  Google Scholar 

  8. Son JS, Appleford M, Ong JL, Wenke JC, Kim JM, Choi SW, Oh DS (2011) J Control Release 153:133

    Article  CAS  Google Scholar 

  9. Baumann MJ, Case ED, Smith IO (2007) Developments in porous biological and geopolymer ceramics. In: Ceramic engineering and science proceedings. Wiley, New York, pp 197–207

    Book  Google Scholar 

  10. Ren F, Smith IO, Baumann MJ, Case ED (2005) Int J Appl Ceram Technol 2:200

    Article  CAS  Google Scholar 

  11. Nicholas JD, Wang L, Call AV, Barnett SA (2012) Phys Chem Chem Phys 14:15379

    Article  CAS  Google Scholar 

  12. Nicholas JD, Barnett SA (2010) J Electrochem Soc 157:B536

    Article  CAS  Google Scholar 

  13. Vohs JM, Gorte RJ (2009) Adv Mater 21:943

    Article  CAS  Google Scholar 

  14. Yang YC, Chang TH, Wu YC, Wang SF (2012) Int J Hydrogen Energy 37:13746

    Article  CAS  Google Scholar 

  15. Sarikaya A, Petrovsky V, Dogan F (2012) Int J Hydrogen Energy 37:11370

    Article  CAS  Google Scholar 

  16. Liang B, Suzuki T, Hamamotoa K, Yamaguchia T, Sumi H, Fujishiro Y, Ingram BJ, Carter J (2012) J Power Sources 202:225

    Article  CAS  Google Scholar 

  17. Geis S, Fricke J, Lobmann P (2002) J Eur Ceram Soc 22:1155

    Article  CAS  Google Scholar 

  18. Shimizi S, Yamaguchi T, Fujishiro Y, Awan M (2009) J Ceram Soc Jpn 117:875

    Google Scholar 

  19. Sulistyo J, Hata T, Kitagawa H, Bronsveld P, Fujisawa M, Hashimoto K, Imamura Y (2010) J Mater Sci 45:1107. doi:10.1007/s10853-009-4053-z

    Article  CAS  Google Scholar 

  20. Hoepfner TP, Case ED (2002) J Biomed Mater Res 60:643

    Article  CAS  Google Scholar 

  21. Case ED (2006) In: Lee S (ed) Encyclopedia of chemical processing (ECHP). Marcel Dekker Inc, New York, p 1687

    Google Scholar 

  22. Yang A, Wang CA, Guo R, Huang Y, Nan CW (2010) Ceram Int 36:549

    Article  CAS  Google Scholar 

  23. Ewais EMM, Barg S, Grathwohl G, Garamoon AA, Morgan NN (2011) Int J Appl Ceram Technol 8:85

    Article  CAS  Google Scholar 

  24. Hu LF, Wang CA, Huang Y (2010) J Mater Sci 45:3242. doi:10.1007/s10853-010-4331-9

    Article  CAS  Google Scholar 

  25. Luo J, Stevens R, Taylor R (1997) J Am Ceram Soc 80:699

    Article  CAS  Google Scholar 

  26. Fan X, Case ED, Ren F, Shu Y, Baumann MJ (2012) J Mech Behav Biomed Mater 8:99

    Article  CAS  Google Scholar 

  27. Nanjangud SC, Brezny R, Green DJ (1995) J Am Ceram Soc 78:266

    Article  CAS  Google Scholar 

  28. He L, Standard O, Huang T, Latella B, Swain M (2008) Acta Biomater 4:577

    Article  CAS  Google Scholar 

  29. Pramanik S, Agarwal AK, Rai K, Garg A (2007) Ceram Int 33:419

    Article  CAS  Google Scholar 

  30. Yao X, Tan S, Jiang D (2005) J Mater Sci 40:4939. doi:10.1007/s10853-005-3875-6

    Article  CAS  Google Scholar 

  31. Hu LF, Wang CA (2010) Ceram Int 36:1697

    Article  CAS  Google Scholar 

  32. Fan X, Case ED, Ren F, Shu Y, Baumann MJ (2012) J Mech Behav Biomed 8:21

    Article  CAS  Google Scholar 

  33. Fan X, Case ED, Gheorghita I, Baumann MJ (2013) J Mech Behav Biomed Mater 20:283–295. doi:10.1016/j.jmbbm.2013.01.031

    Article  CAS  Google Scholar 

  34. Kishimoto A, Koumoto K, Yanagida H, Nameki M (1991) Eng Fract Mech 40:927

    Article  Google Scholar 

  35. Chao LW, Settee DK (1991) J Am Ceram Soc 74:333

    Article  CAS  Google Scholar 

  36. Vales F, Rezakhanlou R, Olagnon C (1999) J Mater Sci 34:4081. doi:10.1023/A:1004632503249

    Article  Google Scholar 

  37. Case ED, Smyth JR (1981) J Mater Sci 16:3215. doi:10.1007/BF00540333

    Article  CAS  Google Scholar 

  38. Vandeperre LJ, Wang J, Clegg WJ (2004) Phil Mag 84:3689

    Article  CAS  Google Scholar 

  39. Ren F, Case ED, Morrison A, Tafesse M, Baumann MJ (2009) Phil Mag 89:1163

    Article  CAS  Google Scholar 

  40. Boccaccini AR (1994) J Am Ceram Soc 77:2779

    Article  CAS  Google Scholar 

  41. Selcuk A, Atkinson A (1997) J Eur Ceram Soc 17:1523

    Article  CAS  Google Scholar 

  42. Fan X, Case ED, Yang Q, Nicholas JD (2013) Ceram Int 39:6877. doi:10.1016/j.ceramint.2013.02.022

  43. Ni JE, Case ED, Khabir KN, Wu CI, Hogan TP, Timm EJ, Girard S, Kanatzidis MG (2010) Mater Sci Eng, B 170:58

    Article  CAS  Google Scholar 

  44. Ni JE, Ren F, Case ED, Timm EJ (2009) Mater Chem Phys 118:459

    Article  CAS  Google Scholar 

  45. Schmidt RD, Ni JE, Case ED, Sakamoto JS, Kleinow DC, Wing BL, Stewart RC, Timm EJ (2010) J Alloy Compd 504:303

    Article  CAS  Google Scholar 

  46. Hoepfner TP, Case ED (2003) Ceram Int 29:699

    Article  CAS  Google Scholar 

  47. Li X, Zhang L, Yin X (2012) Mater Sci Eng, A 549:43

    Article  CAS  Google Scholar 

  48. Zeng J, Sato Y, Ohkubo C, Hosoi T (2005) J Prosthet Dent 94:453

    Article  CAS  Google Scholar 

  49. Krakhmalev PV, Bergstrom J (2006) Wear 260:450

    Article  CAS  Google Scholar 

  50. Kamboj RK, Dhara S, Bhargava P (2003) J Eur Ceram Soc 23:1005

    Article  CAS  Google Scholar 

  51. Wang R, Pan W, Jiang M, Chen J, Luo Y (2002) Mater Sci Eng B 90:261

    Google Scholar 

  52. Rice RW (2000) Mechanical Properties of Ceramics and Composites. Marcel Dekker, New York

    Book  Google Scholar 

  53. Canakci A (2011) J Mater Sci 46:2805. doi:10.1007/s10853-010-5156-2

    Article  CAS  Google Scholar 

  54. Liao Y, Baker I (2011) J Mater Sci 46:2009. doi:10.1007/s10853-010-5197-6

    Article  CAS  Google Scholar 

  55. Minh NQ, Takahashi T (1995) Science and technology of ceramic fuel cells. Elsevier, New York

    Google Scholar 

  56. Sauvet AL, Fouletier J (2001) J Power Sources 101:259

    Article  CAS  Google Scholar 

  57. Trovarelli A (1996) Catal Rev Sci Eng 38:439

    Article  CAS  Google Scholar 

  58. Goodenough JB, Huang YH (2007) J Power Sources 173:1

    Article  CAS  Google Scholar 

  59. Liu J, Madsen BD, Ji Z, Barnett SA (2002) Electrochem Solid State Lett 5:A122

    Article  CAS  Google Scholar 

  60. Gellings PJ, Bouwmeester HJ (eds) (2007) The CRC handbook of solids state electrochemistry. CRC Press, Boca Raton

    Google Scholar 

  61. Chen CY, Liu CL (2011) Ceram Int 37:2353

    Article  CAS  Google Scholar 

  62. Muthukkumaran K, Kuppusami P, Kesavamoorthy R, Mathews T, Mohandas E, Raghunathan VS, Selladurai S (2008) Ionics 14:165

    Article  CAS  Google Scholar 

  63. Nicholas JD, Barnett SA (2009) J Electrochem Soc 156:B458

    Article  CAS  Google Scholar 

  64. Underwood EE (1969) J Microsc 89:161

    Article  CAS  Google Scholar 

  65. Lawn BR, Cook RF (2012) J Mater Sci 47:1. doi:10.1007/s10853-011-5865-1

    Article  CAS  Google Scholar 

  66. ASTM C1327–08 (2008) Standard method for Vickers indentation hardness of advanced ceramics. ASTM International, West Conshohocken

    Google Scholar 

  67. Berry KA, Harmer MP (1986) J Am Ceram Soc 69:143

    Article  CAS  Google Scholar 

  68. Barsoum MW (1997) Fundamentals of ceramics. McGraw-Hill, New York

    Google Scholar 

  69. Rice RW (1998) Porosity of ceramics. Marcel Dekker, Inc., New York

    Google Scholar 

  70. Hardy D, Green DJ (1995) J Eur Ceram Soc 15:769

    Article  CAS  Google Scholar 

  71. Cho SA, Arenas FJ, Ochoa J (1990) Ceram Int 16:301

    Article  CAS  Google Scholar 

  72. Ramadass N, Mohan SC, Reddy SR (1983) Mater Sci Eng 60:65

    Article  CAS  Google Scholar 

  73. Mangalaraja RV, Ananthakumar S, Uma K, Jimenez RM, Lopez M, Camurri CP (2009) Mater Sci Eng A 517:91

    Article  Google Scholar 

  74. Luo J, Stevens R (1999) Ceram Int 25:281

    Article  CAS  Google Scholar 

  75. Ricote J, Pardo L, Jimenez B (1994) J Mater Sci 29:3248. doi:10.1007/BF00356671

    Article  CAS  Google Scholar 

  76. Nix WD, Gao H (1998) J Mech Phys Solids 46:411

    Article  CAS  Google Scholar 

  77. Sangwal K (2000) Mater Chem Phys 63:145

    Article  CAS  Google Scholar 

  78. Bull SJ, Page TF, Yoffe EH (1989) Philos Mag Lett 59:281

    Article  CAS  Google Scholar 

  79. Pharr GM, Herbert EG, Gao Y (2010) Annu Rev Mater Res 40:271

    Article  CAS  Google Scholar 

  80. Gong J, Wu J, Guan Z (1999) J Eur Ceram Soc 19:2625

    Article  CAS  Google Scholar 

  81. Sangwal K (2009) Cryst Res Technol 44:1019

    Article  CAS  Google Scholar 

  82. Korobko R, Chen C-T, Kim S, Cohen SR, Wachtel E, Yavo N, Lubomirsky I (2012) Scripta Mater 66:155

    Article  CAS  Google Scholar 

  83. Kolemen U, Uzuna O, Yılmazlar M, Guclua N, Yanmazc E (2006) J Alloys Compd 415:300

    Article  Google Scholar 

  84. Ozturk O, Erdem M, Asikuzun E, Yildiz O, Yildirim G, Varilci A, Terzioglu C (2013) J Mater Sci: Mater Electron 24:230

    Article  CAS  Google Scholar 

  85. Daguano JKMF, Suzuki PA, Strecker K, Fernandes MHFV, Santos C (2012) Mater Sci Eng A533:26

    Google Scholar 

  86. Machaka R, Derry TE, Sigalas I, Herrmann M (2011) Adv Mater Sci Eng Article 539252

  87. Milman YV, Chugunova SI, Goncharova IV, Chudoba T, Lojkowski W, Gooch W (1999) Int J Refract Met H 17:361

    Article  CAS  Google Scholar 

  88. Armstrong RW (2011) Materials 4:1287

    Article  CAS  Google Scholar 

  89. Zhang TS, Ma J, Kong LB, King P, Kilner JA (2004) Solid State Ion 167:191

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors Qing Yang and Jason D. Nicholas acknowledge the support of a Michigan State University Faculty Startup Package.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eldon D. Case.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, X., Case, E.D., Yang, Q. et al. Room temperature hardness of gadolinia-doped ceria as a function of porosity. J Mater Sci 48, 6977–6985 (2013). https://doi.org/10.1007/s10853-013-7506-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7506-3

Keywords

Navigation