Skip to main content

Advertisement

Log in

Microstructure and mechanical properties of two-phase Fe30Ni20Mn20Al30: part II mechanical properties

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This paper describes the mechanical properties of B2/L21 two-phase Fe30Ni20Mn20Al30 (at.%) in both the as-cast condition and after a 72 h anneal at 823 K. The temperature dependence of the compressive strength of Fe30Ni20Mn20Al30 showed three distinct regions: (1) brittle fracture at low temperature, (2) plastic flow with a rapid decline in yield strength from 1500 to 250 MPa from the brittle-to-ductile transition temperature (BDTT) to 873 K, and (3) a slight decrease in yield strength to ~150 MPa from 873 to 1073 K. Interestingly, the BDTT (573 K) exhibited by the coarser microstructure present in 72 h annealed material was lower than that of the as-cast alloy (623 K). Using both differential scanning calorimetry and in situ heating in a transmission electron microscope, an L21-to-B2 transition was found at 750 ± 25 K. A mixture of intergranular fracture and transgranular cleavage was observed after room temperature compression while only cleavage was found at 673 K. All the specimens deformed extensively without fracture when tested at temperatures higher than 673 K. The strain rate had little effect on the strength at 573 K and a moderate effect at 873 K with a strain-rate sensitivity exponent value of 0.1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hanna JA, Baker I, Wittmann MW, Munroe PR (2005) J Mater Res 20:791

    Article  CAS  Google Scholar 

  2. Baker I, Hanna JA, Wittmann MW, Munroe PR (2005) Microsc Microanal 11:1864

    Google Scholar 

  3. Baker I, Hanna JA, Wittmann MW, Munroe PR (2005) In: The mechanical properties of Fe30Ni20Mn25Al25, TMS proceedings: processing and fabrication of advanced materials XIV with frontiers in materials science 2005: innovative materials and manufacturing techniques, p 237

  4. Loudis JA, Baker I (2008) Microsc Res Tech 71:489

    Article  CAS  Google Scholar 

  5. Loudis JA, Boyd TC, Coen D, Baker I (2007) Proc Mater Res Soc 980:0980-II01-02

    Google Scholar 

  6. Loudis JA, Baker I (2007) Philos Mag 87:5639

    Article  CAS  Google Scholar 

  7. Baker I, Zheng RK, Saxey DW, Kuwano S, Wittmann MW, Loudis JA, Prasad KS, Liu Z, Marceau R, Ringer SP (2009) Intermetallics 17:886

    Article  CAS  Google Scholar 

  8. Wu X, Baker I, Miller MK, More KL (2009) Microsc Microanal 15:2116

    Google Scholar 

  9. Wittmann MW, Baker I, Hanna JA, Munroe PR (2004) MRS proceedings, vol 842, pp S5–S17

  10. Polvani RS, Tzeng WS, Strutt PR (1976) Metall Trans A 7:33

    Article  Google Scholar 

  11. Strutt PR, Kear BH (1985) Proc Mater Res Soc 39:279

    Article  CAS  Google Scholar 

  12. Tian WH, Oh-ishi K, Nemoto M (2001) Acta Metall Sin (Engl Lett) 14(5):313

    CAS  Google Scholar 

  13. Han CS (2007) Korean J Mater Res 17(8):420

    Article  CAS  Google Scholar 

  14. Oh-ishi K, Horita Z, Nemoto M (1997) Mater Trans JIM 38(2):99

    CAS  Google Scholar 

  15. Oh-ishi K, Nemoto M (1997) J Jpn Inst Met 61:282

    CAS  Google Scholar 

  16. Oh-ishi K, Horita Z, Nemoto M (1997) Mater Sci Eng A 239–240:472

    Google Scholar 

  17. Takeyama M, Liu CT (1990) J Mater Res 5(6):1189

    Article  CAS  Google Scholar 

  18. Liao Y (2009) PhD Thesis, Dartmouth College

  19. Wittmann MW, Baker I, Munroe PR (2004) Philos Mag 84(29):3169

    Article  CAS  Google Scholar 

  20. Baker I, Xiao H, Klein O, Nelson C, Whittenberger JD (1995) Acta Metall Mater 43:1723

    Article  CAS  Google Scholar 

  21. Baker I (1995) Mater Sci Eng A 192/193:1

    Article  Google Scholar 

  22. Bowman RR, Noebe RD, Raj SV, Locci IE (1992) Metall Mater Trans 23A:1493

    CAS  Google Scholar 

  23. Noebe RD, Bowman RR, Cullers CL, Raj SV (1991) Mater Res Soc Symp Proc 213:589

    Article  CAS  Google Scholar 

  24. Wu X, Baker I (2013) Microsc Res Technol 76:263

    Article  CAS  Google Scholar 

  25. Von Mises R (1928) Zeitschr Angew Math Mech 8:161

    Article  Google Scholar 

  26. Miracle DB (1993) Acta Metall Mater 41:649

    Article  CAS  Google Scholar 

  27. Wu X, Baker I, Wu H, Munroe PR (2012) Intermetallics 23:116

    Article  CAS  Google Scholar 

  28. Rosenhain W, Ewen D (1913) J Inst Met 10:119

    Google Scholar 

  29. Dieter GE (1984) Mechanical metallurgy. McGraw-Hill Press, New York, p 453

    Google Scholar 

  30. Xiao H, Baker H (1993) Scr Metall Mater 28:1411

    Article  CAS  Google Scholar 

  31. Hahn KH, Vedula K (1989) Scr Metall 23:7

    Article  CAS  Google Scholar 

  32. Raj SV, Noebe RD, Bowman RR (1989) Scr Metall 23:2049

    Article  CAS  Google Scholar 

  33. Yang WJ, Dodd RA (1973) Met Sci 7:41

    CAS  Google Scholar 

  34. Stein DF (1968) In: Rosenfield AR, Hahn GT, Bement AL, Jaffee RI (eds) Dislocation dynamics. McGraw-Hill Press, New York, p 453

    Google Scholar 

Download references

Acknowledgements

This research was supported by the US Department of Energy (DOE), Office of Basic Energy Sciences (DOE Grant DE-FG02-07ER46392). The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing official policies, either expressed or implied of the DOE or the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Baker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, X., Baker, I. & Wu, H. Microstructure and mechanical properties of two-phase Fe30Ni20Mn20Al30: part II mechanical properties. J Mater Sci 48, 6535–6541 (2013). https://doi.org/10.1007/s10853-013-7449-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7449-8

Keywords

Navigation