Skip to main content
Log in

Wetting and adhesion at Mg/MgO interfaces

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The wetting of (100), (110), and (111) MgO single crystals by molten Mg was studied in a flowing Ar atmosphere at 1073 K using an improved sessile drop method. The results show that the contact angle and work of adhesion are mildly dependent on MgO substrate orientation. However, the work of separation calculated by density functional theory shows a sequence of (100) < (110) < (111). This discrepancy was explained by a model considering the possible effects of evaporation and deposition of Mg at the substrate surface on the interfacial adhesion. For Mg on the clean MgO surfaces, the adhesion consists primarily of Mg–O ionic bonds with some Mg–Mg metallic bonds. In addition, a small amount of covalent bonds are present in the metal slab adjacent to the Mg/MgO (110) and Mg/MgO (111) interfaces. The different work of separation at three interfaces depends on the strength and amounts of Mg–O and Mg–Mg bonds as well as on the surface free energy of respective planes. For the MgO surfaces pre-deposited by a monolayer of Mg atoms, the interfaces are dominated by the Mg–Mg bonds, thus mitigating the effect of substrate orientation on the wettability and adhesion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Levy M (1979) Proc Natl Acad Sci USA 76:6062

    Article  CAS  Google Scholar 

  2. Finnis MW (1996) J Phys Condens Matter 8:5811

    Article  CAS  Google Scholar 

  3. Siegel DJ, Hector LG Jr, Adams JB (2002) Phys Rev B 65:085415

    Article  Google Scholar 

  4. Barzilai S, Argaman N, Froumin N, Fuks D, Frage N (2008) Surf Sci 602:1517

    Article  CAS  Google Scholar 

  5. Zhukovskii YF, Kotomin EA, Fuks D, Dorfman S (2004) Surf Sci 566–568:122

    Article  Google Scholar 

  6. Goniakowski J, Noguera C (1999) Phys Rev B 60:16120

    Article  CAS  Google Scholar 

  7. Purton JA, Bird DM, Parker SC, Bullett DW (1999) J Chem Phys 110:8090

    Article  CAS  Google Scholar 

  8. Long Y, Chen NX, Zhang WQ (2005) J Phys Condens Matter 17:2045

    Article  CAS  Google Scholar 

  9. Kantorovich LN, Shluger AL, Sushko PV, Günster J, Stracke P, Goodman DW, Kempter V (1999) Faraday Discuss 114:173

    Article  CAS  Google Scholar 

  10. Goniakowski J, Noguera C (2004) Interface Sci 12:93

    Article  CAS  Google Scholar 

  11. Shen P, Fujii H, Matsumoto T, Nogi K (2004) J Am Ceram Soc 87:2151

    Article  Google Scholar 

  12. Zhang D, Shen P, Shi LX, Jiang QC (2011) Mater Chem Phys 130:665

    Article  CAS  Google Scholar 

  13. Shen P, Zhang D, Lin QL, Shi LX, Jiang QC (2010) Mater Chem Phys 122:290

    Article  CAS  Google Scholar 

  14. Shen P, Fujii H, Matsumoto T, Nogi K (2004) Acta Mater 52:887

    Article  CAS  Google Scholar 

  15. Yang LL, Shen P, Cong XS, Jiang QC (2012) J Mater Sci 48:960. doi:10.1007/s10853-012-6821-4

    Article  Google Scholar 

  16. Nogi K, Tsujimoto M, Ogino K, Iwamoto N (1992) Acta Metall Mater 40:1045

    Article  CAS  Google Scholar 

  17. Henrich VE (1976) Surf Sci 57:385

    Article  CAS  Google Scholar 

  18. Chern G, Huang JJ, Leung TC (1998) J Vac Sci Technol A 16:964

    Article  CAS  Google Scholar 

  19. Shi LX, Shen P, Zhang D, Jiang QC (2011) Appl Surf Sci 257:10743

    CAS  Google Scholar 

  20. Fujii H, Izutani S, Matsumoto T, Kiguchi S, Nogi K (2006) Mater Sci Eng A 417:99

    Article  Google Scholar 

  21. Fujii H, Izutani S (2012) J Mater Sci 47:8387. doi:10.1007/s10853-012-6697-3

    Article  CAS  Google Scholar 

  22. Gale WF, Totemeier TC (2004) Smithells metals reference book, 8th edn. Elsevier, Oxford

    Google Scholar 

  23. Delley B (1990) J Chem Phys 92:508

    Article  CAS  Google Scholar 

  24. Delley B (2000) J Chem Phys 113:7756

    Article  CAS  Google Scholar 

  25. Perdew JP, Zunger A (1981) Phys Rev B 23:5048

    Article  CAS  Google Scholar 

  26. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  27. Broqvist P, Grönbeck H, Panas I (2004) Surf Sci 554:262

    Article  CAS  Google Scholar 

  28. Perdew JP, Wang Y (1992) Phys Rev B 45:13244

    Article  Google Scholar 

  29. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188

    Article  Google Scholar 

  30. Ashcroft NW, Mermin ND (1976) Solid state physics. Brooks/Cole, New York

    Google Scholar 

  31. Wachowicz E, Kiejna A (2001) J Phys Condens Matter 13:10767

    Article  CAS  Google Scholar 

  32. Fiorentini V, Methfessel M (1996) J Phys Condens Matter 8:6525

    Article  CAS  Google Scholar 

  33. Smith JR, Hong T, Srolovitz DJ (1994) Phys Rev Lett 72:4021

    Article  CAS  Google Scholar 

  34. Matsunaka D, Shibutani Y (2008) Phys Rev B 77:165435

    Article  Google Scholar 

  35. Zhang W, Smith JR (2000) Phys Rev B 61:16883

    Article  CAS  Google Scholar 

  36. Feng JW, Zhang WQ, Jiang W (2005) Phys Rev B 72:115423

    Article  Google Scholar 

  37. Passerone D, Pignedoli CA, Valenza F, Muolo ML, Passerone A (2010) J Mater Sci 45:4265. doi:10.1007/s10853-010-4427-2

    Article  CAS  Google Scholar 

  38. Siegel DJ, Hector LG Jr, Adams JB (2002) Surf Sci 498:321

    Article  CAS  Google Scholar 

  39. Batyrev I, Alavi A, Finnis MW (1999) Faraday Discuss 114:33

    Article  CAS  Google Scholar 

  40. Barin I (1995) Thermochemical data of pure substances, 3rd edn. Wiley-VCH Verlag GmbH, Weinheim

    Book  Google Scholar 

  41. Mulliken RS (1955) J Chem Phys 23:1833

    Article  CAS  Google Scholar 

  42. Pojani A, Finocchi F, Goniakowski J, Noguera C (1997) Surf Sci 387:354

    Article  CAS  Google Scholar 

  43. Plass R, Egan K, Collzao-Davila C, Grozea D, Landree E, Marks LD, Gajdardziska-Josifovska M (1998) Phys Rev Lett 81:4891

    Article  CAS  Google Scholar 

  44. Iida T, Guthrie RIL (1993) The physical properties of liquid metals. Clarendon, Oxford

    Google Scholar 

Download references

Acknowledgements

This study was supported by National Natural Science Foundation of China (No. 50871045), National Basic Research Program of China (973 Program, No. 2012CB619600) and Graduate Innovation Fund of Jilin University (No. 20121086).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, ET., Shen, P., Shi, LX. et al. Wetting and adhesion at Mg/MgO interfaces. J Mater Sci 48, 6008–6017 (2013). https://doi.org/10.1007/s10853-013-7397-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7397-3

Keywords

Navigation