Skip to main content
Log in

Enhanced electrochemical detection performance of multiwall carbon nanotubes functionalized by aspartame

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Inexpensive, non-toxic, and biocompatible materials that can disperse multiwall carbon nanotubes (MWCNTs) in aqueous solutions through a non-covalent approach while retaining their unique electronic and photonic properties are highly preferred. In this article, we introduce the use of an amphiphilic dipeptide derivative, aspartame, as an effective dispersing agent in preparing highly stable suspensions under ultrasonication. The results demonstrate that aspartame was absorbed by the nanotube surface possibly because of non-covalent ππ stacking between the aromatic group of aspartame and the CNT backbone. In addition, the resulting MWCNT/aspartame composites remained stably dispersed over a wide range of pH values. The chronoamperometric measurements of MWCNT/aspartame composite-coated electrodes for hydrogen peroxide demonstrated better electrochemical detection performance, as characterized by significantly enhanced step current, higher sensitivity, and reduced potential compared with bare electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Odom TW, Huang J-L, Kim P, Lieber CM (1998) Nature 391:62

    Article  CAS  Google Scholar 

  2. Haddon RC (2002) Acc Chem Res 35:997

    Article  CAS  Google Scholar 

  3. Girifalco LA, Hodak M, Lee RS (2000) Phys Rev B 62:13104

    Article  CAS  Google Scholar 

  4. Hirsch A (2002) Angew Chem Int Ed 41:1853

    Article  CAS  Google Scholar 

  5. Balasubramanian K, Burghard M (2005) Small 1:180

    Article  CAS  Google Scholar 

  6. Zhao YL, Stoddart JF (2009) Acc Chem Res 42:1161

    Article  CAS  Google Scholar 

  7. Star A, Stoddart JF, Steuerman D, Diehl M, Boukai A, Wong EW, Yang X, Chung S-W, Choi H, Heath JR (2001) Angew Chem Int Ed 40:1721

    Article  CAS  Google Scholar 

  8. Bahr JL, Tour JM (2002) J Mater Chem 12:1952

    Article  CAS  Google Scholar 

  9. Yoon S, In I (2011) J Mater Sci 46:1316. doi:10.1007/s10853-010-4917-2

    Article  CAS  Google Scholar 

  10. Star A, Steuerman DW, Heath JR, Stoddart JF (2002) Angew Chem Int Ed 41:2508

    Article  CAS  Google Scholar 

  11. Vaisman L, Wagner HD, Marom G (2006) Adv Colloid Interface Sci 128–130:37

    Article  Google Scholar 

  12. Zheng M, Jagota A, Semke ED, Diner BA, McLean RS, Lustig SR, Richardson RE, Tassi NG (2003) Nat Mater 2:338

    Article  CAS  Google Scholar 

  13. Zorbas V, Smith AL, Xie H, Ortiz-Acevedo A, Dalton AB, Dieckmann GR, Draper RK, Baughman RH, Musselman IH (2005) J Am Chem Soc 127:12323

    Article  CAS  Google Scholar 

  14. Salzmann CG, Lee GKC, Ward MAH, Chu BTT, Green MLH (2008) J Mater Chem 18:1977

    Article  CAS  Google Scholar 

  15. Sayes CM, Liang F, Hudson JL, Mendez J, Guo W, Beach JM, Moore VC, Doyle CD, West JL, Billups WE, Ausman KD, Colvin VL (2006) Toxicol Lett 161:135

    Article  CAS  Google Scholar 

  16. Witus LS, Rocha J-DR, Yuwono VM, Paramonov SE, Weisman RB, Hartgerink JD (2007) J Mater Chem 17:1909

    Article  CAS  Google Scholar 

  17. Zheng M, Jagota A, Strano MS, Santos AP, Barone P, Chou SG, Diner BA, Dresselhaus MS, Mclean RS, Onoa GB, Samsonidze GG, Semke ED, Usrey M, Walls DJ (2003) Science 302:1545

    Article  CAS  Google Scholar 

  18. Tsyboulski DA, Bakota EL, Witus LS, Rocha J-DR, Hartgerink JD, Weisman RB (2008) J Am Chem Soc 130:17134

    Article  CAS  Google Scholar 

  19. Cuppen HM, Beurskens G, Kozuka S, Tsukamoto K, Smits JMM, de Gelder R, Grimbergen RFP, Meekes H (2005) Cryst Growth Des 5:917

    Article  CAS  Google Scholar 

  20. Cuppen HM, van Eerd ART, Meekes H (2004) Cryst Growth Des 4:989

    Article  CAS  Google Scholar 

  21. Piao L, Liu Q, Li Y, Wang C (2008) J Phys Chem C 112:2857

    Article  CAS  Google Scholar 

  22. Yang H, Zhu Y, Chen D, Li C, Chen S, Ge Z (2010) Biosens Bioelectron 26:295

    Article  Google Scholar 

  23. Zhang J, Gao L (2007) Mater Lett 61:3571

    Article  CAS  Google Scholar 

  24. Kumar SA, Wang S-F (2009) Mater Lett 63:1830

    Article  CAS  Google Scholar 

  25. Sinani VA, Gheith MK, Yaroslavov AA, Rakhnyanskaya AA, Sun K, Mamedov AA, Wicksted JP, Kotov NA (2005) J Am Chem Soc 127:3463

    Article  CAS  Google Scholar 

  26. Ali-Boucetta H, Al-Jamal KT, McCarthy D, Prato M, Bianco A, Kostarelos K (2008) Chem Commun 4:459

    Article  Google Scholar 

  27. Sun Z, Nicolosi V, Rickard D, Bergin SD, Aherne D, Coleman JN (2008) J Phys Chem C 112:10692

    Article  CAS  Google Scholar 

  28. Lee GKC, Sach C, Green MLH, Wong L-l, Salzmann CG (2010) Chem Commun 46:7013

    Article  CAS  Google Scholar 

  29. Zhang LW, Monteiro-Riviere NA (2009) Toxicol Sci 110:138

    Article  CAS  Google Scholar 

  30. Nagy A, Zane A, Cole SL, Severance M, Dutta PK, Waldman WJ (2011) Chem Res Toxicol 24:2176

    Article  CAS  Google Scholar 

  31. Nepal D, Geckeler KE (2006) Small 2:406

    Article  CAS  Google Scholar 

  32. Nepal D, Sohn J-I, Aicher WK, Lee S, Geckeler KE (2005) Biomacromolecules 6:2919

    Article  CAS  Google Scholar 

  33. Lv W, Guo M, Liang M-H, Jin F-M, Cui L, Zhi L, Yang Q-H (2010) J Mater Chem 20:6668

    Article  CAS  Google Scholar 

  34. Star A, Han T-R, Gabriel J-CP, Bradley K, Grüner G (2003) Nano Lett 3:1421

    Article  CAS  Google Scholar 

  35. Yuan J, Chen J, Wu X, Fang K, Niu L (2011) J Electroanal Chem 656:120

    Article  CAS  Google Scholar 

  36. Cheng Y-D, Lin S-Y (2000) J Agric Food Chem 48:631

    Article  CAS  Google Scholar 

  37. Rajarajeswari M, Iyakutti K, Kawazoe Y (2011) Chem Phys Lett 511:299

    Article  CAS  Google Scholar 

  38. Lyons M, Keeley G (2006) Sensors 6:1791

    Article  CAS  Google Scholar 

  39. Shi J, Claussen JC, McLamore ES, ul Haque A, Jaroch D, Diggs AR, Calvo-Marzal P, Rickus JL, Porterfield DM (2011) Nanotechnology 22:355502

    Article  Google Scholar 

  40. Gong K, Zhang M, Yan Y, Su L, Mao L, Xiong S, Chen Y (2004) Anal Chem 76:6500

    Article  CAS  Google Scholar 

  41. Bonanni A, Pumera M, Miyahara Y (2011) Phys Chem Chem Phys 13:4980

    Article  CAS  Google Scholar 

  42. Wang J (2005) Electroanalysis 17:7

    Article  CAS  Google Scholar 

  43. Li W, Xiao L, Qin C (2010) J Mater Sci 45:5915. doi:10.1007/s10853-010-4671-5

    Article  CAS  Google Scholar 

  44. Shobha Jeykumari DR, Ramaprabhu S, Sriman Narayanan S (2007) Carbon 45:1340

    Article  Google Scholar 

  45. Wang J, Musameh M, Lin Y (2003) J Am Chem Soc 125:2408

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Program for New Century Excellent Talents in Chinese University (NCET-11-0372), the Ministry of Science and Technology of China (Nos. 2012BAD29B05, 2012YQ090194 and 2012AA06A303), the Natural Science Foundation of China (21276192, 51173128 and 31071509), and the Program of Introducing Talents of Discipline to Universities of China (B06006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rongxin Su or Libing Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, M., Jin, F., Liu, R. et al. Enhanced electrochemical detection performance of multiwall carbon nanotubes functionalized by aspartame. J Mater Sci 48, 5624–5632 (2013). https://doi.org/10.1007/s10853-013-7357-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7357-y

Keywords

Navigation