Skip to main content

Advertisement

Log in

Spark plasma sintering and thermoelectric evaluation of nanocrystalline magnesium silicide (Mg2Si)

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Recently magnesium silicide (Mg2Si) has received great interest from thermoelectric (TE) society because of its non-toxicity, environmental friendliness, comparatively high abundance, and low production material cost as compared to other TE systems. It also exhibited promising transport properties, including high electrical conductivity and low thermal conductivity, which improved the overall TE performance (ZT). In this work, Mg2Si powder was obtained through high energy ball milling under inert atmosphere, starting from commercial magnesium silicide pieces (99.99 %, Alfa Aesar). To maintain fine microstructure of the powder, spark plasma sintering (SPS) process has been used for consolidation. The Mg2Si powder was filled in a graphite die to perform SPS and the influence of process parameters as temperature, heating rate, holding time and applied pressure on the microstructure, and densification of compacts were studied in detail. The aim of this study is to optimize SPS consolidation parameters for Mg2Si powder to achieve high density of compacts while maintaining the nanostructure. X-Ray diffraction (XRD) was utilized to investigate the crystalline phase of compacted samples and scanning and transmission electron microscopy (SEM & TEM) coupled with Energy-Dispersive X-ray Analysis (EDX) was used to evaluate the detailed microstructural and chemical composition, respectively. All sintered samples showed compaction density up to 98 %. Temperature dependent TE characteristics of SPS compacted Mg2Si as thermal conductivity, electrical resistivity, and Seebeck coefficient were measured over the temperature range of RT 600 °C for samples processed at 750 °C, reaching a final ZT of 0.14 at 600 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dresselhaus MS, Chen G, Tang MY, Yang R, Lee H, Wang D, Ren Z, Fleurial J-P, Gogna P (2007) Adv Mater 19:1043

    Article  CAS  Google Scholar 

  2. Rowe DM (1995) CRC handbook of thermoelectrics. CRC Press LLC, Boca Raton

    Book  Google Scholar 

  3. Snyder GJ, Toberer ES (2008) Nature Mater 7:105

    Article  CAS  Google Scholar 

  4. Hicks LD, Harman TC, Sun X, Dresselhaus MS (1996) Phys Rev B 53:R10493

    Article  CAS  Google Scholar 

  5. Toprak M, Muhammed M (2006) CRC Thermoelectrics Handbook. CRC Press LLC, Boca Raton

    Google Scholar 

  6. Harman T, Walsh M, Laforge B, Turner G (2005) J Electron Mater 34:L19

    Article  CAS  Google Scholar 

  7. Harman TC, Taylor PJ, Walsh MP, LaForge BE (2002) Science 297:2229

    Article  CAS  Google Scholar 

  8. Li S, He Z, Toprak M, Stiewe C, Mueller E, Muhammed M (2007) Phys Status Solidi RRL 6:259

    Article  Google Scholar 

  9. He ZM, Stiewe C, Platzek D, Karpinski G, Muller E, Li SH, Toprak M, Muhammed M (2007) J Appl Phys 101:043707

    Article  Google Scholar 

  10. Poudel B, Hao Q, Ma Y, Lan YC, Minnich A, Yu B, Yan X, Wang DZ, Muto A, Vashaee D, Chen XY, Liu JM, Dresselhaus MS, Chen G, Ren ZF (2008) Science 320:5876

    Article  Google Scholar 

  11. Saleemi M, Toprak MS, Li S, Johnsson M, Muhammed M (2012) J Mater Chem 22:725

    Article  CAS  Google Scholar 

  12. Scheele M, Oeschler N, Meier K, Kornowski A, Klinke C, Weller H (2009) Adv Funct Mater 19:3476

    Article  CAS  Google Scholar 

  13. Nikitin EN, Bazanov VG, Tarasov VI (1961) Sov Phys Solid State 3:2648

    Google Scholar 

  14. Harman TC, Taylor PJ, Spears DL, Walsh MP (2000) J Electron Mater 29:L1

    Article  CAS  Google Scholar 

  15. Thermoelectric Materials of the Future, http://www.marlow.com/ resources/futureconcepts/materials.html Accessed June 9 2010

  16. Bose S, Acharya HN, Banerjee HD (1993) J Mater Sci 28:5461. doi:10.1007/BF00367816

    Article  CAS  Google Scholar 

  17. Wang L, Qin XY (2003) Scripta Mater 49:243

    Article  CAS  Google Scholar 

  18. Rowe DM (2006) Thermoelectrics handbook macro to nano. CRC Press LLC, Boca Raton

    Google Scholar 

  19. Zaitsev V, Ktitorov S, Fedorov M (2009) CRC handbook of thermoelectrics. CRC Press LLC, Boca Raton

    Google Scholar 

  20. Schilz J, Riffel M, Pixius K, Meyer HJ (1999) Powder Technol 105:149

    Article  CAS  Google Scholar 

  21. Wei X, Ying QX, Guang KM, Li C (2006) Trans Nonferrous Met Soc 16:987

    Article  Google Scholar 

  22. Ioannou M, Hatzikraniotis E, Lioutas C, Hassapis T, Altantzis T (2012) Powder Technol 217:523

    Article  CAS  Google Scholar 

  23. Lutterotti L, Matthies S, Wenk H-R, Schultz AS, Richardson JW (1997) J Appl Phys 81:594

    Article  CAS  Google Scholar 

  24. Nanko M, Abe H, Takeda M, Homma T, Abe H, Kondo A, Naito M (2011) Mater Sci Eng 21:012006. doi:10.1088/1757-899X/21/1/012006

    Google Scholar 

  25. Fiameni S, Boldrini S, Battiston S, Famengo A (2012) J Solid State Chem 193:142

    Article  CAS  Google Scholar 

  26. Jung JY, Kim IH (2010) Elec Mater Lett 6(4):187

    Article  CAS  Google Scholar 

  27. Akasaka M, Iida T, Nemoto T, Soga J, Sato J, Makino K, Fukano M, Takanashi Y (2007) J Crys Growth 304:196

    Article  CAS  Google Scholar 

  28. Martin JJ (1972) J Phys Chem Solids 33:1139

    Article  CAS  Google Scholar 

  29. Bux SK, Yeung MT, Toberer ES, Snyder GJ, Kanerb RB, Fleuriala JP (2011) J Mater Chem 21:12259

    Article  CAS  Google Scholar 

  30. Paul B, Banerji P (2009) Nanosci Nanotechnol Lett 1:208

    Article  CAS  Google Scholar 

  31. Cederkrantz D, Farahi N, Borup KA, Iversen BB, Nygren M (2012) J Appl Phys 111:023701

    Article  Google Scholar 

Download references

Acknowledgements

This work has been funded by Swedish Foundation for Strategic Research–SSF (grant no: EM11-0002) and the Italian National Research Council–Italian Ministry of Economic Development Agreement “Ricerca di sistema elettrico nazionale.” The authors would like to thanks to Hans Bergqvist for TEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Saleemi or M. S. Toprak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saleemi, M., Toprak, M.S., Fiameni, S. et al. Spark plasma sintering and thermoelectric evaluation of nanocrystalline magnesium silicide (Mg2Si). J Mater Sci 48, 1940–1946 (2013). https://doi.org/10.1007/s10853-012-6959-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6959-0

Keywords

Navigation