Skip to main content
Log in

High-temperature thermoelectric properties of Ca0.9Y0.1Mn1−x Fe x O3 (0 ≤ x ≤ 0.25)

  • Energy Materials & Thermoelectrics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Polycrystalline compounds of Ca0.9Y0.1Mn1 x Fe x O3 for 0 ≤ x ≤ 0.25 were prepared by solid-state reaction, followed by spark plasma sintering process, and their thermoelectric properties from 300 to 1200 K were systematically investigated in terms of Y and Fe co-doping at the Ca- and Mn-sites, respectively. Crystal structure refinement revealed that all the investigated samples have the O′-type orthorhombic structure, and the lattice parameters slightly increased with increasing Fe concentration, causing a crystal distortion. It was found that with increasing the content of Fe doping, the Seebeck coefficient of Ca0.9Y0.1Mn1 x Fe x O3 tended to increase, while the tendency toward the electrical conductivity was more complicated. The highest power factor was found to be 2.1 × 10−4 W/mK2 at 1150 K for the sample with x = 0.05 after annealing at 1523 K for 24 h in air. Thermal conductivity of the Fe-doped samples showed a lower value than that of the x = 0 sample, and the highest dimensionless figure of merit, ZT was found to be improved about 20 % for the sample with x = 0.05 as compared to that of the x = 0 sample at 1150 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Rowe DM (ed) (2006) Thermoelectric handbook: macro to nano. CRC/Taylor & Francis, Boca Raton

    Google Scholar 

  2. Snyder GJ, Toberer ES (2008) Nat Mater 7:105

    Article  CAS  Google Scholar 

  3. Bocher L, Aguirre MH, Logvinovich D, Shkabko A, Robert R, Trottmann M, Weidenkaffet A (2008) Inorg Chem 47:8077

    Article  CAS  Google Scholar 

  4. Kosuga A, Urate S, Kurosaki K, Yamanaka S, Funahashi R (2008) Jpn J Appl Phys 47(8):6399

    Article  CAS  Google Scholar 

  5. Wang Y, Sui FanH, Wang X, Su Y, Su W, Liu X (2009) Chem Mater 21:4653

    Article  CAS  Google Scholar 

  6. Flahaut D, Mihara T, Funahashi R, Nabeshima N, Lee L, Ohta H, Koumoto K (2006) J Appl Phys 100:084911

    Article  Google Scholar 

  7. Wang Y, Sui Y, Su W (2008) J Appl Phys 104:093703

    Article  Google Scholar 

  8. Bocher L, Aguirre MH, Robert R, Logvinovich D, Bakardjieva S, Hejtmanek J, Weidenkaff A (2009) Acta Mater 57:5667

    Article  CAS  Google Scholar 

  9. Kosuga A, Isse Y, Wang Y, Koumoto K, Funahashi R (2009) J Appl Phys 105:093717

    Article  Google Scholar 

  10. Thuy NT, Minh DL, Nong NV, Bahl CRH and Pryds N, 7-9 November, Ho Chi Minh city, Vietnam (2011), Proceedings of the solid state physics and materials science symposium (in press)

  11. Nong NV, Pryds N, Linderoth S, Ohtaki M (2011) J Adv Mater 23(21):2484

    Article  Google Scholar 

  12. Wang HC, Wang CL, Su WB, Liu J, Sun Y, Peng H, Mei LM (2011) J Am Ceram Soc 94(3):838

    Article  CAS  Google Scholar 

  13. Poeppelmeier KR, Leonowicz ME, Scanlon JC, Longo JM (1982) J Solid State Chem 45:71

    Article  CAS  Google Scholar 

  14. Kostogloudis GC, Fertis P, Ftikos C (1999) Solid State Ionics 118:241

    Article  CAS  Google Scholar 

  15. Shanon RD (1976) Acta Crystallogr A A32:751

    Article  Google Scholar 

  16. Karim DP, Aldred AT (1979) Phys Rev B 20:2255

    Article  CAS  Google Scholar 

  17. Vecherskii SI, Konopel’ko MA, Esina NO and Batalov NN (2002) Inorg Mater 38(12):1491

    Google Scholar 

  18. Jonker GH (1968) Philips Res Rep 23:131

    Google Scholar 

  19. Ohtaki M, Tsubota T, Eguchi K, Arai H (1996) J Appl Phys 79:1816

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Programme Commission on Energy and Environment (EnMi) which is part of the Danish Council for Strategic Research (Contract No. 10-093971) for sponsoring this work via the OTE-POWER research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le Thanh Hung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hung, L.T., Nong, N.V., Han, L. et al. High-temperature thermoelectric properties of Ca0.9Y0.1Mn1−x Fe x O3 (0 ≤ x ≤ 0.25). J Mater Sci 48, 2817–2822 (2013). https://doi.org/10.1007/s10853-012-6834-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6834-z

Keywords

Navigation