Skip to main content
Log in

Evolution of ultrafine microstructures in commercial purity aluminum heavily deformed by torsion

  • Ultrafine Grained Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Commercial purity aluminum (1100Al) bars were severely plastic deformed by torsion deformation at room temperature. The specimens were deformed to ultrahigh equivalent strain of 5.85 in maximum. Microstructure evolution during the torsion deformation was characterized using electron back scatter diffraction analysis on two different sections: the longitudinal section parallel to the torsion axis and transverse section perpendicular to the torsion axis. The grain size decreased and the fraction of high angle grain boundary increased with increasing equivalent strain. Elongated ultrafine grained structure was obtained after an equivalent strain of 3.27. We have found that the microstructure evolution in the specimen deformed by torsion exhibited similar behavior to those in the same material heavily deformed by accumulative roll bonding. The average grain size of 0.32 μm with the high angle boundary fraction of 0.76 was achieved in the specimen deformed to an equivalent strain of 5.27. Though the microstructure and hardness on the transverse section varied depending on the radial positions, they could be arranged as a simple function of equivalent strain. The present work confirmed that the torsion deformation worked as a kind of severe plastic deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Segal V (2006) In: Altan BS (ed) Severe plastic deformation: towards bulk production of nanostructured materials. Nova science publishers, New York, p 1

    Google Scholar 

  2. Richert M, Liu Q, Hansen N (1999) Mater Sci Eng A 260:275

    Article  Google Scholar 

  3. Zhilyaev A, Langdon T (2008) Prog Mater Sci 53:893

    Article  CAS  Google Scholar 

  4. Segal V (1999) Mater Sci Eng A 271:322

    Article  Google Scholar 

  5. Valiev R, Langdon T (2006) Prog Mater Sci 51:881

    Article  CAS  Google Scholar 

  6. Tsuji N, Saito Y, Lee SH, Minamino Y (2003) Adv Eng Mater 5:338. doi:10.1002/adem200310077

    Article  CAS  Google Scholar 

  7. Huang X, Tsuji N, Hansen N, Minamino Y (2003) Mater Sci Eng A 340:265

    Article  Google Scholar 

  8. Terada D, Inoue S, Tsuji N (2007) J Mater Sci 42:1673. doi:10.1007/s10853-006-0909-7

    Article  CAS  Google Scholar 

  9. Hughes D, Hansen N (1997) Acta Mater 45:3871

    Article  CAS  Google Scholar 

  10. Hansen N, Jensen DJ (1999) Philos Trans R Soc Lond Ser A 357:1447

    Article  CAS  Google Scholar 

  11. Hansen N (2001) Metall Mater Trans A 32:2917

    Article  Google Scholar 

  12. Liu Q, Huang X, Lloyd DJ, Hansen N (2002) Acta Mater 50:3789

    Article  CAS  Google Scholar 

  13. Nakata N, Militzer M (2005) ISIJ Int 45:82

    Article  CAS  Google Scholar 

  14. Debray B, Teracher P, Jonas JJ (1995) Metall Mater Trans A 26:99

    Article  Google Scholar 

  15. Shrivastava SC, Jonas JJ, Canova G (1982) Mech Phys Solids 30:75

    Article  CAS  Google Scholar 

  16. Hosseini S, Manesh H (2009) Mater Des 30:2911

    Article  CAS  Google Scholar 

  17. Neishi K, Horita Z, Langdon T (2002) Mater Sci Eng A 325:54

    Article  Google Scholar 

  18. Todaka Y, Umemoto M, Yamazaki A, Sasaki J, Tsuchiya K (2008) Mater Trans 49:7

    Article  CAS  Google Scholar 

  19. Loucif A, Figueiredo RB, Baudin T, Brisset F, Longdon T (2010) Mater Sci Eng A 527:4864

    Article  Google Scholar 

  20. Kamikawa N (2005) Grain refinement of structural metallic materials by accumulation roll bonding. PhD thesis, Osaka University

  21. Zhilyaeva A, Kim B, Nurislamova G, Baroo M, Szpunar J, Langdon T (2002) Scripta Mater 46:575

    Article  Google Scholar 

  22. Xu C, Horita Z, Langdon T (2007) Acta Mater 55:203

    Article  CAS  Google Scholar 

  23. Jiang H, Zhu Y, Butt D, Alexandrov I, Lowe T (2000) Mater Sci Eng A 290:128

    Article  Google Scholar 

  24. Sakai G, Nakamuraa K, Horita Z, Langdon T (2005) Mater Sci Eng A 406:268

    Article  Google Scholar 

  25. Vorhauer A, Pippan R (2004) Scripta Mater 51:921

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Grant-in-Aid for Scientific Research on Innovative Area, “Bulk Nanostructured Metals”, from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and the support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuhiro Tsuji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khamsuk, S., Park, N., Adachi, H. et al. Evolution of ultrafine microstructures in commercial purity aluminum heavily deformed by torsion. J Mater Sci 47, 7841–7847 (2012). https://doi.org/10.1007/s10853-012-6661-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6661-2

Keywords

Navigation