Skip to main content
Log in

Reinforcement of Ag nanoparticle paste with nanowires for low temperature pressureless bonding

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Low temperature interconnection processes for lead-free packaging and flexible electronics are currently of great interest. Several studies have focused on bonding using silver nanoparticles (Ag NPs) or copper nanoparticles (Cu NPs). However, pressure assistance is generally necessary for bonding with nanomaterial pastes, which limits its industrial applications. Here, a unique method for bonding of copper wires using Ag NP and nanowire binary pastes is examined, in which joining is accomplished from 60 to 200 °C and yet without the application of pressure. Bonding is facilitated by solid state sintering of Ag nanomaterials and metallic bonding between Cu and Ag interfaces. The effects of different additions of Ag nanowires in bonded joints are studied, in which addition of 20 vol% Ag nanowires improves bonding strength after low temperature sintering by 50–80 % compared with Ag nanoparticle paste. A mechanical reinforcement effect due to introduction of Ag nanowires has been confirmed by observation of the fracture path propagation, where necking, breakage and pullout of nanowires occur on loading. This low temperature pressureless bonding technology has the potential for wide use for interconnection in lead-free microcircuits and flexible electronic packaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Li Y, Moon K, Wong C (2005) Science 308:1419

    Article  CAS  Google Scholar 

  2. Tu K, Gusak A, Li M (2003) J Appl Phys 93:1335

    Article  CAS  Google Scholar 

  3. Suganuma K (2001) Curr Opin Solid State Mater Sci 5:55

    Article  CAS  Google Scholar 

  4. Glazer J (1995) Int Mater Rev 40:65

    Article  CAS  Google Scholar 

  5. Frear DR, Vianco PT (1994) Metall Mater Trans A 25A:1509

    Article  CAS  Google Scholar 

  6. Coughlin JP, Williams JJ, Crawford GA, Chawla N (2009) Metall Mater Trans A 40A:176

    Article  CAS  Google Scholar 

  7. Zeng K, Tu KN (2002) Mater Sci Eng R 38:55

    Article  Google Scholar 

  8. Lu Y, Huang JY, Wang C, Sun S, Lou J (2010) Nat Nanotech 5:218

    Article  CAS  Google Scholar 

  9. Cui Q, Gao F, Mukherjee S, Gu Z (2009) Small 5:1246

    Article  CAS  Google Scholar 

  10. Hu L, Pasta M, Mantia FL, Cui L, Jeong S, Deshazer HD, Choi JW, Han SM, Cui Y (2010) Nano Lett 10:708

    Article  CAS  Google Scholar 

  11. Zeng X, Zhang Q, Yu R, Lu C (2010) Adv Mater 22:4484

    Article  CAS  Google Scholar 

  12. Sirringhaus H, Kawase T, Friend RH, Shimoda T, Inbasekaran M, Wu W, Woo EP (2000) Science 290:2123

    Article  CAS  Google Scholar 

  13. Lee WF, Tsao KT (2010) J Mater Sci 45:89. doi:10.1007/s10853-009-3896-7

    Article  CAS  Google Scholar 

  14. Ridley B, Nivi B, Jacobson JM (1999) Science 286:746

    Article  CAS  Google Scholar 

  15. Redinger D, Molesa S, Yin S, Farschi R, Subramanian V (2004) IEEE Trans Electron Dev 51:1978

    Article  CAS  Google Scholar 

  16. Yung KC, Wu SP, Liem H (2009) J Mater Sci 44:154. doi:10.1007/s10853-008-3119-7

    Article  CAS  Google Scholar 

  17. Kim D, Moon J (2005) Electrochem Solid State Lett 8:J30

    Article  CAS  Google Scholar 

  18. Lee HH, Chou KS, Huang KC (2005) Nanotechnology 16:2436

    Article  CAS  Google Scholar 

  19. Zhou Y (2008) Microjoining and Nanojoining. Woodhead Publishing Ltd, CRC Press, Cambridge

    Book  Google Scholar 

  20. Hu A, Guo JY, Alarifi H, Patane G, Zhou Y, Compagnini G, Xu CX (2010) Appl Phys Lett 97:153117

    Article  Google Scholar 

  21. James C, Chakraborty T, Brown A, Comyn T, Dorey R, Harrington J, Laister AJ, Miles RE, Puchmark C, Xu B, Xiong W, Zhang Q, Milne SJ (2009) J Mater Sci 44:5325. doi:10.1007/s10853-009-3609-2

    Article  CAS  Google Scholar 

  22. Ide E, Angata S, Hirose A, Kobayashi KF (2005) Acta Mater 53:2385

    Article  CAS  Google Scholar 

  23. Bai JG, Zhang ZZ, Calata JN, Lu GQ (2006) IEEE Trans Compon Pack Technol 29:589

    Article  CAS  Google Scholar 

  24. Yan J, Zou G, Hu A, Zhou Y (2011) J Mater Chem 21:15981

    Article  CAS  Google Scholar 

  25. Bakhishev T, Subramanian V (2009) J Electron Mater 38:2720

    Article  CAS  Google Scholar 

  26. Alarifi H, Hu A, Yavuz M, Zhou Y (2011) J Electron Mater 40:1394

    Article  CAS  Google Scholar 

  27. Buffat P, Borel JP (1976) Phys Rev A 13:2287

    Article  CAS  Google Scholar 

  28. Gibson RF (2010) Compos Struct 92:2793

    Article  Google Scholar 

  29. Domenici V, Conradi M, Remškar M, Viršek M, Zupančič B, Mrzel A, Chambers M, Zalar B (2011) J Mater Sci 46:3639. doi:10.1007/s10853-011-5280-7

    Article  CAS  Google Scholar 

  30. Espinosa HD, Juster AL, Latoure FJ, Loh OY, Gregoire D, Zavattieri PD (2011) Nat Commun 2:173

    Article  Google Scholar 

  31. Bai H, Li C, Shi G (2011) Adv Mater 23:1089

    Article  CAS  Google Scholar 

  32. Naslain R (2004) Compos Sci Technol 64:155

    Article  CAS  Google Scholar 

  33. Guicciard S, Silvestroni L, Nygren M, Sciti D (2010) J Am Ceram Soc 98:2384

    Article  Google Scholar 

  34. Lee KS, Jang KS, Park JH, Kim TW, Han IS, Woo SK (2011) Mater Des 32:4394

    Article  CAS  Google Scholar 

  35. Zhang L, Yang H, Guo X, Shen J, Zhu X (2011) Scr Mater 65:186

    Article  CAS  Google Scholar 

  36. Pemberton SR, Oberg EK, Dean J, Tsaroucha D, Markaki AE, Marston L, Clyne TW (2011) Compos Sci Technol 71:266

    Article  CAS  Google Scholar 

  37. Yang J, Li S, Luo Y, Yan L, Wang F (2011) Carbon 49:1542

    Article  CAS  Google Scholar 

  38. Coughlin JP, Williams JJ, Chawla N (2009) J Mater Sci 44:700. doi:10.1007/s10853-008-3188-7

    Article  CAS  Google Scholar 

  39. Gao PX, Lao CS, Hughes WL, Wang ZL (2005) Chem Phys Lett 408:174

    Article  CAS  Google Scholar 

  40. Zhang ZX, Chen XY, Xiao F (2011) J Adhes Sci Technol 25:1465

    Article  CAS  Google Scholar 

  41. Yadav GG, Zhang G, Qiu B, Susoreny JA, Ruan X, Wu Y (2011) Nanoscale 3:4078

    Article  CAS  Google Scholar 

  42. Li X, Gao F, Gu Z (2011) Open Surf Sci J 3:91

    Google Scholar 

  43. Zhao X, Fuji M, Shirai T, Watanabe H, Takahashi M, Zuo Y (2011) J Mater Sci 46:4630. doi:10.1007/s10853-011-5365-3

    Article  CAS  Google Scholar 

  44. Sun Y, Gates B, Mayers B, Xia Y (2002) Nano Lett 2:165

    Article  CAS  Google Scholar 

  45. Sun Y, Xia Y (2002) Adv Mater 14:833

    Article  CAS  Google Scholar 

  46. Yuan X, Li C, Guan G, Xiao Y, Zhang D (2008) Polym Degrad Stabil 93:466

    Article  CAS  Google Scholar 

  47. Zheng M, Gu M, Jin Y, Jin G (2000) Mat Sci Eng B 77:55

    Article  Google Scholar 

  48. Epling WS, Hoflund GB, Salaita GN (1998) J Phys Chem B 102:2263

    Article  CAS  Google Scholar 

  49. Tada H, Bronkema J, Bell AT (2004) Catal Lett 92:93

    Article  CAS  Google Scholar 

  50. Krammer O, Sinkovics B (2010) Microelectron Reliab 50:235

    Article  CAS  Google Scholar 

  51. Hirose A, Yanagawa H, Ide E, Kobayashi KF (2004) Sci Technol Adv Mat 5:267

    Article  CAS  Google Scholar 

  52. Lei TG, Calata JN, Lu GQ (2010) IEEE Trans Compon Pack Technol 33:98

    Article  CAS  Google Scholar 

  53. Zhao B, Kwon HJ (2011) J Adhes Sci Technol 25:557

    Article  Google Scholar 

  54. de Gennes PG (1971) J Chem Phys 55:572

    Article  Google Scholar 

  55. Hsueh CH (1990) Mat Sci Eng A 23:1

    Article  Google Scholar 

  56. Mall S, Vozzola RP, Zawada LP (1989) J Am Ceram Soc 72:1175

    Article  CAS  Google Scholar 

  57. Leach AM, McDowell M, Gall K (2007) Adv Funct Mater 17:43

    Article  CAS  Google Scholar 

  58. Wu Z, Zhang YW, Jhon MH, Gao H and Srolovitz DJ (2012) Nano Lett 12(2):910. doi:10.1021/nl203980u

    Google Scholar 

  59. Iyengar N, Curtin WA (1997) Acta Mater 45:1489

    Article  CAS  Google Scholar 

  60. Chermant JL, Boitier G, Darzens S, Farizy G, Vicens J, Sangleboeuf JC (2002) J Eur Ceram Soc 22:2443

    Article  CAS  Google Scholar 

  61. Vaughan TJ, McCarthy CT (2011) Compos Sci Technol 71:388

    Article  CAS  Google Scholar 

  62. Rödel J (1992) J Eur Ceram Soc 10:143

    Article  Google Scholar 

  63. Suemasu H, Kondo A, Itatani K, Nozue A (2001) Compos Sci Technol 61:281

    Article  CAS  Google Scholar 

  64. Suzuki T, Sato M, Sakai M (1992) J Mater Res 7:2869

    Article  CAS  Google Scholar 

  65. Liao H, Wu Y, Wu M, Liu H (2011) Polym Compos 32:837

    Article  CAS  Google Scholar 

  66. Terashima S, Yoshiharu K, Takuya H, Masamoto T (2003) J Electron Mater 32:1527

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was jointly supported by the Canadian Research Chairs (CRC) program, a strategic project grant of National Sciences and Engineering Research Council (NSERC) and the State Scholarship Fund of China (No. 2010640009). The authors would like to acknowledge the comments and suggestions of Prof. Scott Lawson, Dr. Xiaogang Li and Mr. Hong Huang from the Centre for Advanced Materials Joining at the University of Waterloo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Peng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, P., Hu, A., Zhao, B. et al. Reinforcement of Ag nanoparticle paste with nanowires for low temperature pressureless bonding. J Mater Sci 47, 6801–6811 (2012). https://doi.org/10.1007/s10853-012-6624-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6624-7

Keywords

Navigation