Skip to main content
Log in

Electrothermal stress in conducting particulate composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Electrothermal–mechanical interaction plays an important role in controlling the performance of electromechanical structures and field-assisted processes. The understanding of electrothermal–mechanical behavior of a material requires the analyses of Joule heating and thermomechanical deformation. In this study, we analyze the current-induced thermal stress in a conducting composite consisting of conducting spherical inclusions at dilute concentration. Assuming that there is no interaction among conducting inclusions, we obtain closed-form solutions of local temperature and thermal stress. The thermal stress created by Joule heating is proportional to the square of electric current density (electric field intensity) and the von-Mises stress reaches the maximum value at the interface between the spherical inclusion and the matrix. Large electric current will likely cause local delamination along the interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Suzuki K, Naruse Y, Honda H, Funaki H, Itaya K, Uchikoga S (2008) Jpn J Appl Phys 47:351

    Article  CAS  Google Scholar 

  2. Gilgunn PJ, Liu JW, Sarkar N, Fedder GK (2008) J MicroElectroMech Sys 17:103

    Article  CAS  Google Scholar 

  3. Gerson Y, Krylov S, Ilic B (2010) J MicroElectroMech Sys 20:112001

    Google Scholar 

  4. Zhu Y, Bazaei A, Moheimani SOR, Yuce MR (2010) IEEE Electron Device Lett 31:1161

    Article  Google Scholar 

  5. Chen KP, Zhang XW, Wang H, Zhang LG, Zhu J, Yang FQ, Ln An (2008) J Am Ceram Soc 91:2475

    Article  CAS  Google Scholar 

  6. Daffos B, Chevallier G, Estournes C, Simon P (2011) J Power Sources 196:1620

    Article  CAS  Google Scholar 

  7. Chen W, Anselmi-Tamburini U, Garay JE, Groza JR, Munir ZA (2005) Mater Sci Eng A394:132

    CAS  Google Scholar 

  8. Anselmi-Tamburini U, Gennari S, Garay JE, Munir ZA (2005) Mater Sci Eng A394:139

    CAS  Google Scholar 

  9. Vanmeensel K, Laptev A, Hennicke J, Vleugels J, Van der Biest O (2005) Acta Mater 53:4379

    Article  CAS  Google Scholar 

  10. Chen R, Yang FQ (2008) J Phys D Appl Phys 41:065404

    Article  Google Scholar 

  11. Wang YC, Fu ZY (2002) Mater Sci Eng B90:34

    CAS  Google Scholar 

  12. Strutt MJO (1928) Phil Mag 5:904

    Google Scholar 

  13. Morgan VT, Barton NG (1986) J Phys D Appl Phys 19:975

    Article  CAS  Google Scholar 

  14. Jordan A, Szybiak A, Benmouna M, Barka A (1987) Int J Heat Mass Transf 30:1539

    Article  Google Scholar 

  15. Barletta A, Zanchini E (1995) Int J Heat Mass Transf 38:2821

    Article  Google Scholar 

  16. Yang FQ, An L (2010) Int J Appl Electromag Mech 32:125

    Google Scholar 

  17. Yang FQ (2009) J Appl Phys 106:113536

    Article  Google Scholar 

  18. Mayyas M, Shiakolas PS, Lee WH, Stephanou H (2009) Sensors Actuators A—Phys 152:192

    Article  Google Scholar 

  19. Lau GK, Goosen JFL, van Keulen F, Duc TC, Sarro PM (2008) J MicroElectroMech Sys 17:809

    Article  CAS  Google Scholar 

  20. Rolicz P (1978) J Appl Phys 49:4363

    Article  Google Scholar 

  21. Yang FQ, Song W (2008) Int J Appl Electromag Mech 27:9

    Google Scholar 

  22. Wang X, Casolco SR, Xu G, Garay JE (2007) Acta Mater 55:3611

    Article  CAS  Google Scholar 

  23. Cincotti A, Locci AM, Orrù R, Cao G (2007) AIChE J 53:703

    Article  CAS  Google Scholar 

  24. Smythe WR (1950) In: Static and dynamic electricity. McGraw-Hill Book Company Inc., New York

    Google Scholar 

  25. Asaro R (2006) In: Mechanics of solids and materials. Cambridge University Press, Cambridge

    Book  Google Scholar 

  26. Callister WD, Rethwisch DG (2010) In: Materials science and engineering: an introduction, 8th edn. Wiley, New York

    Google Scholar 

  27. Maizza G, Grasso S, Sakka Y (2009) J Mater Sci 44:1219. doi:10.1088/1468-6996/10/5/053001

    Article  CAS  Google Scholar 

  28. Song Y, Li YY, Zhou ZY, Lai YG, Ye YQ (2011) J Mater Sci 46:5645. doi:10.1007/s10853-011-5515-7

    Article  CAS  Google Scholar 

  29. Wang C, Cheng L, Zhao Z (2010) Comput Mater Sci 49:351

    Article  CAS  Google Scholar 

  30. Liu M, Yang FQ (2012) J Electron Mater 41:352

    Article  CAS  Google Scholar 

  31. ABAQUS User Manual V. 6.10 (2011) Hibbit, Karlsson, Sorensen, Inc., Rhode Island

Download references

Acknowledgements

This study was supported by NSF through a Grant no. CMMI-0800018. The authors thank Ming Liu for the finite element calculation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuqian Yang.

Appendix

Appendix

The coefficients of \( \tilde{a}_{n} \) and \( \tilde{b}_{n} \) are listed below,

$$ \tilde{a}_{0} = \frac{{\left( {1 + \chi^{2} } \right)}}{2\chi }\frac{{\rho_{\text{m}} }}{{\kappa_{\text{m}} }} + \frac{{\left( {1 - 2\chi } \right)^{2} }}{6\chi }\frac{{\rho_{\text{s}} }}{{\kappa_{\text{s}} }}\left( {1 + \frac{{2\kappa_{\text{s}} }}{{\kappa_{\text{m}} }}} \right) $$
(75)
$$ \tilde{b}_{0} = 0 $$
(76)
$$ \tilde{a}_{2} = \frac{1}{{3\chi R^{2} (3 + 2\kappa_{\text{s}} /\kappa_{\text{m}} )}}\frac{{\rho_{\text{m}} }}{{\kappa_{\text{m}} }}\left( {(\chi - 5)(\chi + 1) + (1 - 2\chi )^{2} -\left[ {2 + \frac{{3\kappa_{\text{m}} }}{{\kappa_{\text{s}} }}} \right]\frac{{\rho_{\text{s}} }}{{\rho_{\text{m}} }}} \right) $$
(77)
$$ \tilde{b}_{2} = \frac{1}{3\chi }\frac{{2R^{3} (1 + \chi )}}{{3 + 2\kappa_{\text{s}} /\kappa_{\text{m}} }}\frac{{\rho_{\text{m}} }}{{\kappa_{\text{m}} }}\left[ {( - 1 + 2\chi ) + (1 + \chi )\frac{{\kappa_{\text{s}} }}{{\kappa_{\text{m}} }}} \right] $$
(78)
$$ \tilde{a}_{n} = \tilde{b}_{n} = 0 \; \quad \; {\text{for}}\;n = 1 {\text{ and}}\;n > 2 $$
(79)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, F., An, L. Electrothermal stress in conducting particulate composites. J Mater Sci 47, 6226–6236 (2012). https://doi.org/10.1007/s10853-012-6541-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6541-9

Keywords

Navigation