Skip to main content

Advertisement

Log in

Advanced titania nanostructures and composites for lithium ion battery

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Owing to the increasing demand of energy and shifting to the renewable energy resources, lithium ion batteries (LIBs) have been considered as the most promising alternative and green technology for energy storage applied in hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and other electric utilities. Owing to its environmental benignity, availability, and stable structure, titanium dioxide (TiO2) is one of the most attractive anode materials of LIBs with high capability, long cycling life, high safety, and low cost. However, the poor electrical conductivity and low diffusion coefficient of Li-ions in TiO2 hamper the advancement of TiO2 as anode materials of LIBs. Therefore, intensive research study has been focused on designing the nanostructures of TiO2 and its composites to reduce the diffusion length of Li-ion insertion/extraction and improve the electrical conductivity of the electrode materials. In this article, the development of TiO2 and its composites in nano-scales including fabrication, characterization of TiO2 nanomaterials, TiO2/carbon composite, and TiO2/metal oxide composites to improve their properties (capacity, cycling performance, and energy density) for LIBs are reviewed. Meanwhile, the mechanisms for influences of the structure, surface morphology, and additives to TiO2 composites on the related properties of TiO2 and TiO2 composites to LIBs are discussed. The new directions of research on this field are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Park C-M et al (2010) Chem Soc Rev 39(8):3115

    Article  CAS  Google Scholar 

  2. Amine K et al (2010) Adv Mater (Weinheim, Ger) 22(28):3052

    Article  CAS  Google Scholar 

  3. Zhou H et al (2010) ChemSusChem 3(9):1009

    Article  CAS  Google Scholar 

  4. Nelson P, Amine K (2010) Lithium Batter 203. http://www.transportation.anl.gov/pdfs/HV/461.pdf

  5. Daniel C (2008) JOM 60(9):43

    Article  CAS  Google Scholar 

  6. Terada N (2010) J Jpn Inst Energy 89(5):433

    CAS  Google Scholar 

  7. Nishi Y (2001) J Power Sources 100(1–2):101

    Article  CAS  Google Scholar 

  8. Li J-L, Daniel C, Wood D (2011) J Power Sources 196(5):2452

    Article  CAS  Google Scholar 

  9. Huang SY et al (1995) J Electrochem Soc 142(9):L142

    Article  CAS  Google Scholar 

  10. Yang Z et al (2011) Chem Rev 111(5):3577

    Article  CAS  Google Scholar 

  11. Rajeshwar K et al (2001) Pure Appl Chem 73(12):1849

    Article  CAS  Google Scholar 

  12. Primo A, Corma A, Garcia H (2011) Phys Chem Chem Phys 13(3):886

    Article  CAS  Google Scholar 

  13. Yang Z et al (2009) J Power Sources 192(2):588

    Article  CAS  Google Scholar 

  14. Wagemaker M et al (2003) J Am Chem Soc 125(3):840

    Article  CAS  Google Scholar 

  15. Xu T et al (2010) JOM 62(9):24

    Article  CAS  Google Scholar 

  16. Earle MD (1942) Phys Rev 61:56

    Article  CAS  Google Scholar 

  17. Yoon S et al (2009) Electrochem Solid State Lett 12(2):A28

    Article  CAS  Google Scholar 

  18. Abayev I et al (2003) Phys Status Solidi A 196(1):R4

    Article  CAS  Google Scholar 

  19. Kavan L et al (1996) J Am Chem Soc 118(28):6716

    Article  CAS  Google Scholar 

  20. Dachille F, Simons PY, Roy R (1968) Am Mineral 53(11–12):1929

    CAS  Google Scholar 

  21. Post JE, Burnham CW (1986) Am Mineral 71(1–2):142

    CAS  Google Scholar 

  22. Kavan L, Fattakhova D, Krtil P (1999) J Electrochem Soc 146(4):1375

    Article  CAS  Google Scholar 

  23. Ohzuku T, Takehara Z, Yoshizawa S (1979) Electrochim Acta 24(2):219

    Article  CAS  Google Scholar 

  24. Zachau-Christiansen B et al (1988) Solid State Ion 28–30(Pt 2):1176

    Article  Google Scholar 

  25. Hu Y-S et al (2006) Adv Mater 18(11):1421

    Article  CAS  Google Scholar 

  26. Barnard AS, Zapol P (2004) J Phys Chem B 108(48):18435

    Article  CAS  Google Scholar 

  27. Ranade MR et al (2002) Proc Natl Acad Sci USA 99(9, Suppl 2):6476

    Article  CAS  Google Scholar 

  28. van de Krol R, Goossens A, Schoonman J (1999) J Phys Chem B 103(34):7151

    Article  CAS  Google Scholar 

  29. Olson CL, Nelson J, Islam MS (2006) J Phys Chem B 110(20):9995

    Article  CAS  Google Scholar 

  30. Stashans A et al (1996) Phys Rev B Condens Matter 53(1):159

    Article  CAS  Google Scholar 

  31. Mackrodt WC (1999) J Solid State Chem 142(2):428

    Article  CAS  Google Scholar 

  32. Koudriachova MV, Harrison NM, de Leeuw SW (2002) Phys Rev B Condens Matter Mater Phys 65(23):235423/1

    Article  CAS  Google Scholar 

  33. Muscat J, Swamy V, Harrison NM (2002) Phys Rev B Condens Matter Mater Phys 65(22):224112/1

    Article  CAS  Google Scholar 

  34. Koudriachova MV, De Leeuw SW, Harrison NM (2004) Phys Rev B Condens Matter Mater Phys 70(16):165421/1

    Article  CAS  Google Scholar 

  35. Koudriachova MV, de Leeuw SW, Harrison NM (2004) Phys Rev B Condens Matter Mater Phys 69(5):054106/1

    Article  CAS  Google Scholar 

  36. Soedergren S et al (1997) J Phys Chem B 101(16):3087

    Article  CAS  Google Scholar 

  37. Henningsson A et al (2003) J Chem Phys 118(12):5607

    Article  CAS  Google Scholar 

  38. Koudriachova MV, Harrison NM, de Leeuw SW (2003) Solid State Ion 157(1–4):35

    Article  CAS  Google Scholar 

  39. Payne MC et al (1992) Rev Mod Phys 64(4):1045

    Article  CAS  Google Scholar 

  40. Cava RJ et al (1984) J Solid State Chem 53(1):64

    Article  CAS  Google Scholar 

  41. Deng D et al (2009) Energy Environ Sci 2(8):818

    Article  CAS  Google Scholar 

  42. Gligor F, de Leeuw SW (2006) Solid State Ion 177(26–32):2741

    Article  CAS  Google Scholar 

  43. Johnson OW (1964) Phys Rev 136(1):284

    Article  CAS  Google Scholar 

  44. Koudriachova MV, Harrison NM, de Leeuw SW (2001) Phys Rev Lett 86(7):1275

    Article  CAS  Google Scholar 

  45. Macklin WJ, Neat RJ (1992) Solid State Ion 53–56(Pt 1):694

    Article  Google Scholar 

  46. Feist TP, Davies PK (1992) J Solid State Chem 101(2):275

    Article  CAS  Google Scholar 

  47. Marchand R, Brohan L, Tournoux M (1980) Mater Res Bull 15(8):1129

    Article  CAS  Google Scholar 

  48. Zukalova M et al (2005) Chem Mater 17(5):1248

    Article  CAS  Google Scholar 

  49. Nuspl G, Yoshizawa K, Yamabe T (1997) J Mater Chem 7(12):2529

    Article  CAS  Google Scholar 

  50. Dambournet D, Belharouak I, Amine K (2010) Chem Mater 22(3):1173

    Article  CAS  Google Scholar 

  51. Lee D-H et al (2008) Eur J Inorg Chem 6:878

  52. Anji Reddy M et al (2008) Electrochem Solid State Lett 11(8):A132

    Article  CAS  Google Scholar 

  53. Koudriachova MV, Matar M (2009) ECS Trans 16(42):63

    Google Scholar 

  54. Reddy MA et al (2007) Electrochem Solid State Lett 10(2):A29

    Article  CAS  Google Scholar 

  55. Zhang Y-X, Zhang X-l, Zheng H-H (2009) Dianchi 39(2):106

    CAS  Google Scholar 

  56. Kavan L et al (2000) J Phys Chem B 104(50):12012

    Article  CAS  Google Scholar 

  57. Kavan L, Kratochvilova K, Graetzel M (1995) J Electroanal Chem 394(1–2):93

    Google Scholar 

  58. Tang Y et al (2009) J Mater Chem 19(33):5980

    Article  CAS  Google Scholar 

  59. Sudant G et al (2005) J Mater Chem 15(12):1263

    CAS  Google Scholar 

  60. Jiang C et al (2007) J Power Sources 166(1):239

    Article  CAS  Google Scholar 

  61. Fattakhova-Rohlfing D et al (2007) Adv Funct Mater 17(1):123

    Article  CAS  Google Scholar 

  62. Kubiak P et al (2008) J Power Sources 175(1):510

    Article  CAS  Google Scholar 

  63. Liu Z, Hong L, Guo B (2005) J Power Sources 143(1–2):231

    Article  CAS  Google Scholar 

  64. Armstrong AR et al (2005) Adv Mater 17(7):862

    Article  CAS  Google Scholar 

  65. Wang D (2008) Chem Mater 20(10):3435

    Article  CAS  Google Scholar 

  66. Oh SW, Park S-H, Sun Y-K (2006) J Power Sources 161(2):1314

    Article  CAS  Google Scholar 

  67. Sushko ML, Rosso KM, Liu J (2010) J Phys Chem Lett 1(13):1967

    Article  CAS  Google Scholar 

  68. Wang J et al (2007) J Phys Chem C 111(40):14925

    Article  CAS  Google Scholar 

  69. Wilhelm O et al (2004) J Power Sources 134(2):197

    Article  CAS  Google Scholar 

  70. Poizot P et al (2000) Nature 407(6803):496

    Article  CAS  Google Scholar 

  71. Exnar I et al (1997) J Power Sources 68(2):720

    Article  CAS  Google Scholar 

  72. Kang JW et al (2011) J Electrochem Soc 158(2):A59

    Article  CAS  Google Scholar 

  73. Tsuji T et al (2009) Appl Surf Sci 255(24):9626

    Article  CAS  Google Scholar 

  74. Baudrin E et al (2007) Electrochem Commun 9(2):337

    Article  CAS  Google Scholar 

  75. Jiang C et al (2007) Electrochem Solid State Lett 10(5):A127

    Article  CAS  Google Scholar 

  76. Reddy MA et al (2006) Electrochem Commun 8(8):1299

    Article  CAS  Google Scholar 

  77. Kubiak P et al (2009) J Power Sources 194(2):1099

    Article  CAS  Google Scholar 

  78. Pfanzelt M et al (2011) J Power Sources 196(16):6815

    Article  CAS  Google Scholar 

  79. Pfanzelt M, Kubiak P, Wohlfahrt-Mehrens M (2010) Electrochem Solid State Lett 13(7):A91

    Article  CAS  Google Scholar 

  80. Chen JS, Lou XW (2010) J Power Sources 195(9):2905

    Article  CAS  Google Scholar 

  81. Khomane Ramdas B (2011) J Colloid Interface Sci 356(1):369

    Article  CAS  Google Scholar 

  82. Qiao H et al (2010) Chem Phys Lett 490(4–6):180

    Article  CAS  Google Scholar 

  83. Dong S et al (2011) Thin Solid Films 519(18):5978

    Article  CAS  Google Scholar 

  84. Armstrong G et al (2006) Electrochem Solid State Lett 9(3):A139

    Article  CAS  Google Scholar 

  85. Inaba M et al (2009) J Power Sources 189(1):580

    Article  CAS  Google Scholar 

  86. Zhu G-N, Wang C-X, Xia Y-Y (2011) J Power Sources 196(5):2848

    Article  CAS  Google Scholar 

  87. Wang X et al (2011) J Cent South Univ Technol (Engl Ed) 18(2):406

    Article  CAS  Google Scholar 

  88. Armstrong AR et al (2004) Angew Chem Int Ed 43(17):2286

    Article  CAS  Google Scholar 

  89. Armstrong AR et al (2005) Adv Mater (Weinheim, Ger) 17(7):862

    Article  CAS  Google Scholar 

  90. Armstrong AR et al (2005) J Power Sources 146(1–2):501

    Article  CAS  Google Scholar 

  91. Beuvier T et al (2010) Inorg Chem 49(18):8457

    Article  CAS  Google Scholar 

  92. Yang Z et al (2011) Electrochem Commun 13(1):46

    Article  CAS  Google Scholar 

  93. Liu B et al (2010) J Mater Res 25(8):1588

    Article  CAS  Google Scholar 

  94. Wang Y, Wu M, Zhang WF (2008) Electrochim Acta 53(27):7863

    Article  CAS  Google Scholar 

  95. Li J et al (2011) Chem Commun 47(12):3439

    Article  CAS  Google Scholar 

  96. Xiang G et al (2010) Chem Commun 46(36):6801

    Article  CAS  Google Scholar 

  97. Estruga M, Domingo C, Ayllon JA (2010) Mater Lett 64(21):2357

    Article  CAS  Google Scholar 

  98. Wessel C et al (2011) Chem Eur J 17(3):775

  99. Lan Y et al (2005) Adv Funct Mater 15(8):1310

    Article  CAS  Google Scholar 

  100. Kim J, Cho J (2007) J Electrochem Soc 154(6):A542

    Article  CAS  Google Scholar 

  101. Choi MG et al (2010) Electrochim Acta 55(20):5975

    Article  CAS  Google Scholar 

  102. Yan J et al (2009) Mater Chem Phys 118(2–3):367

    Article  CAS  Google Scholar 

  103. Wang K et al (2007) Adv Mater 19(19):3016

    Article  CAS  Google Scholar 

  104. Gao XP et al (2005) Electrochem Solid State Lett 8(1):A26

    Article  CAS  Google Scholar 

  105. Zhou Y-K et al (2003) J Electrochem Soc 150(9):A1246

    Article  CAS  Google Scholar 

  106. Wang Q, Wen Z, Li J (2006) Inorg Chem 45(17):6944

    Article  CAS  Google Scholar 

  107. Saravanan K, Ananthanarayanan K, Balaya P (2010) Energy Environ Sci 3(7):939

    Article  CAS  Google Scholar 

  108. Fu LJ et al (2007) Electrochem Commun 9(8):2140

    Article  CAS  Google Scholar 

  109. Wang Z et al (2007) Electrochem Solid State Lett 10(3):A77

    Article  CAS  Google Scholar 

  110. Yoon S, Manthiram A (2011) J Phys Chem C 115(19):9410

    Article  CAS  Google Scholar 

  111. Lai C et al (2011) J Power Sources 196(10):4735

    Article  CAS  Google Scholar 

  112. Wang J et al (2011) J Phys Chem C 115(5):2529

    Article  CAS  Google Scholar 

  113. Jung H-G et al (2009) Electrochem Commun 11(4):756

    Article  CAS  Google Scholar 

  114. Guo Y-G, Hu Y-S, Maier J (2006) Chem Commun 26:2783

  115. Wu QL, Subramanian N, Rankin SE (2011) Hierarchically porous titania thin film prepared by controlled phase separation and surfactant templating, Langmuir. ACS ASAP

  116. Wu Q-L, Rankin SE (2011) J Phys Chem C 115(24):11925

    Article  CAS  Google Scholar 

  117. Fang H-T et al (2009) Nanotechnology 20(22):2257011

    Article  CAS  Google Scholar 

  118. Ortiz GF et al (2009) Chem Mater 21(1):63

    Article  CAS  Google Scholar 

  119. Wei Z et al (2010) J Solid State Electrochem 14(6):1045

    Article  CAS  Google Scholar 

  120. Furukawa H, Hibino M, Honma I (2004) J Electrochem Soc 151(4):A527

    Article  CAS  Google Scholar 

  121. Jung JH et al (2002) Chem Mater 14(4):1445

    Article  CAS  Google Scholar 

  122. Lee J-H et al (2005) J Phys Chem B 109(27):13056

    Article  CAS  Google Scholar 

  123. Kasuga T et al (1998) Langmuir 14(12):3160

    Article  CAS  Google Scholar 

  124. Tian ZR et al (2003) J Am Chem Soc 125(41):12384

    Article  CAS  Google Scholar 

  125. Gong D et al (2001) J Mater Res 16(12):3331

    Article  CAS  Google Scholar 

  126. Mor GK et al (2003) J Mater Res 18(11):2588

    Article  CAS  Google Scholar 

  127. Hassan FMB et al (2009) J Electrochem Soc 156(12):K227

    Article  CAS  Google Scholar 

  128. Paulose M et al (2006) J Phys Chem B 110(33):16179

    Article  CAS  Google Scholar 

  129. Prakasam HE et al (2007) J Phys Chem C 111(20):7235

    Article  CAS  Google Scholar 

  130. Paulose M et al (2007) J Phys Chem C 111(41):14992

    Article  CAS  Google Scholar 

  131. Cai Q et al (2005) J Mater Res 20(1):230

    Article  CAS  Google Scholar 

  132. Tsuchiya H et al (2005) Electrochem Commun 7(6):576

    Article  CAS  Google Scholar 

  133. Macak JM et al (2005) Angew Chem Int Ed 44(45):7463

    Article  CAS  Google Scholar 

  134. Jiao F, Shaju KM, Bruce PG (2005) Angew Chem Int Ed 44(40):6550

    Article  CAS  Google Scholar 

  135. Kim H, Chi J (2008) J Mater Chem 18(7):771

    Article  CAS  Google Scholar 

  136. Cao F-F et al (2010) Chem Mater 22(5):1908

    Article  CAS  Google Scholar 

  137. Ishii Y et al (2010) J Phys Chem Solids 71(4):511

    Article  CAS  Google Scholar 

  138. Dechakiatkrai C et al (2009) J Nanosci Nanotechnol 9(2):955

    Article  CAS  Google Scholar 

  139. Lee SW et al (2010) Nat Nanotechnol 5(7):531

    Article  CAS  Google Scholar 

  140. Moriguchi I et al (2008) J Phys Chem B 112(46):14560

    Article  CAS  Google Scholar 

  141. Wang Q, Wen ZH, Li JH (2006) Adv Funct Mater 16(16):2141

    Article  CAS  Google Scholar 

  142. Reddy ALM, Ramaprabhu S (2007) J Phys Chem C 111(21):7727

    Article  CAS  Google Scholar 

  143. Choi DW et al (2010) Electrochem Commun 12(3):378

    Article  CAS  Google Scholar 

  144. Meng XB et al (2011) Nanotechnology 22(16):1

  145. Wagemaker M, Borghols WJH, Mulder FM (2007) J Am Chem Soc 129(14):4323

    Article  CAS  Google Scholar 

  146. Qiu YC et al (2010) ACS Nano 4(11):6515

    Article  CAS  Google Scholar 

  147. Wang DH et al (2009) ACS Nano 3(4):907

    Article  CAS  Google Scholar 

  148. Gao J et al (2008) Electrochim Acta 53(5):2376

    Article  CAS  Google Scholar 

  149. Xu J et al (2008) J Power Sources 175(2):903

    Article  CAS  Google Scholar 

  150. Yang ZX et al (2011) J Mater Chem 21(24):8591

    Article  CAS  Google Scholar 

  151. Fu LJ et al (2006) J Power Sources 159(1):219

    Article  CAS  Google Scholar 

  152. Das SK, Darmakolla S, Bhattacharyya AJ (2010) J Mater Chem 20(8):1600

    Article  CAS  Google Scholar 

  153. Grugeon S et al (2001) J Electrochem Soc 148(4):A285

    Article  CAS  Google Scholar 

  154. Wu M-S, Chiang P-CJ (2006) Electrochem Commun 8(3):383

    Article  CAS  Google Scholar 

  155. Lee JH et al (2011) Appl Phys A Mater Sci Process 102(3):545

    Article  CAS  Google Scholar 

  156. Kanjwal MA et al (2010) J Ceram Process Res 11(4):437

    Google Scholar 

  157. Uchiyama H et al (2009) Solid State Ion 180(14–16):956

    Article  CAS  Google Scholar 

  158. Du GD et al (2010) J Mater Chem 20(27):5689

    Article  CAS  Google Scholar 

  159. Roginskaya YE et al (2006) Russ J Electrochem 42(4):355

    Article  CAS  Google Scholar 

  160. Guo YG et al (2007) Adv Mater 19(16):2087

    Article  CAS  Google Scholar 

  161. Zhu G et al (2011) J Alloys Compd 509(29):7814

    Article  CAS  Google Scholar 

  162. Rajkumar N, Kanmani SS, Ramachandran K (2011) Adv Sci Lett 4(2):627

    Article  CAS  Google Scholar 

  163. Park K et al (2011) J Phys Chem C 115(11):4927

    Article  CAS  Google Scholar 

  164. Balaya P et al (2003) Adv Funct Mater 13(8):621

    Article  CAS  Google Scholar 

  165. Wang YG, Wang ZD, Xia YY (2005) Electrochim Acta 50(28):5641

    Article  CAS  Google Scholar 

  166. Song T et al (2010) Nano Lett 10(5):1710

    Article  CAS  Google Scholar 

  167. Huang S, Zhu T (2011) J Power Sources 196(7):3664

    Article  CAS  Google Scholar 

  168. Park S-E et al (2009) Trans Nonferr Met Soc Chin 19(4):1023

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanhu Guo.

Additional information

Xin Su and QingLiu Wu contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, X., Wu, Q., Zhan, X. et al. Advanced titania nanostructures and composites for lithium ion battery. J Mater Sci 47, 2519–2534 (2012). https://doi.org/10.1007/s10853-011-5974-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5974-x

Keywords

Navigation