Skip to main content
Log in

A cellular level biocompatibility and biosafety evaluation of mesoporous SiO2-based nanocomposite with lanthanum species

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The risk assessment of SiO2 nanoparticles has attracted extensive attention due to their great potential for various commercial purposes. However, the toxicity of mesoporous SiO2-based nanocomposite is still unclear. Herein SiO2-based hexagonal mesoporous nanosphere doping La3+ ions with diameter of 40–50 nm (SLa-HMS) and micronsized SiO2-based hexagonal mesoporous solid inlaid with nanowires, 80–250 nm in length and 4–5 nm in diameter, of La species (WLa-HMS) were synthesized via self-assembly method. The specimens were characterized by small angle XRD, TEM, EDS, FT-IR, and N2 ad–desorption. HeLa, fibroblast, and HBMSC cells were exposed to 0.1–100 μg/mL of SLa-HMS and WLa-HMS colloids for 12, 24, 48, and 72 h. Our data demonstrated that exposure of SLa-HMS in the dose range tested had no hazardous effect on all three cell lines, which was greatly different from previous reports. However, the WLa-HMS with average particle size of 10–19 μm was proven to be very toxic to the growth of all three cell lines. These interesting findings strongly suggest that doping heteroatom could be a way to improve the cytotoxicity of nanomaterials, as well as to oncotherapy on the basis of the hazardous effect of nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Nature 359:710

    Article  CAS  Google Scholar 

  2. Trewyn BG, Slowing II, Giri S, Chen HT, Lin VS-Y (2007) Acc Chem Res 40:846

    Article  CAS  Google Scholar 

  3. Torney F, Trewyn BG, Lin VS-Y, Wang K (2007) Nat Nanotechnol 2:295

    Article  CAS  Google Scholar 

  4. Rosenholm JM, Duchanoy A, Lindén M (2008) Chem Mater 20:1126

    Article  CAS  Google Scholar 

  5. Park J-H, Gu L, Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ (2009) Nat Mater 8:331

    Article  CAS  Google Scholar 

  6. Lee C-H, Cheng S-H, Wang Y-J, Chen Y-C, Chen N-T, Souris J, Chen C-T, Mou C, Yang C-S, Lo L-W (2009) Adv Funct Mater 19:215

    Article  CAS  Google Scholar 

  7. Rosenholm JM, Sahlgren C, Lindén M (2010) Nanoscale 2:1870

    Article  CAS  Google Scholar 

  8. Prokopowicz M, Łukasiak J (2010) J Non-Cryst Solids 356:1711

    Article  CAS  Google Scholar 

  9. Lei B, Chen X, Wang Y, Zhao N (2009) Mater Lett 63:1719

    Article  CAS  Google Scholar 

  10. Deng Y, Qi D, Deng C, Zhang X, Zhao D (2008) J Am Chem Soc 130:28

    Article  CAS  Google Scholar 

  11. Suh WH, Suh YH, Stucky GD (2009) Nano Today 4:27

    Article  CAS  Google Scholar 

  12. Chen M, Wu LM, Zhou SX, You B (2006) Adv Mater 18:801

    Article  CAS  Google Scholar 

  13. Kubo S, Kosuge K (2007) Langmuir 23:11761

    Article  CAS  Google Scholar 

  14. Wei K, Guo W, Lai C, Zhao N, Li X (2009) J Alloys Compd 484:841

    Article  CAS  Google Scholar 

  15. Guo W, Wei K, Lin C (2011) J Non-Cryst Solids 357:105

    Article  CAS  Google Scholar 

  16. Wang W, Liu R, Liu W, Tan J, Liu W, Kang H, Huang Y (2010) J Mater Sci 45:5567. doi:10.1007/s10853-010-4618-x

    Article  CAS  Google Scholar 

  17. Tirumala VR, Pai RA, Agarwal S, Testa JJ, Bhatnagar G, Romang AH, Chandler C, Gorman BP, Jones RL, Lin EK, Watkins JJ (2007) Chem Mater 19:5868

    Article  CAS  Google Scholar 

  18. Vasiliev PO, Shen Z, Hodgkins RP, Bergström L (2006) Chem Mater 18:4933

    Article  CAS  Google Scholar 

  19. Delclos T, Aimé C, Pouget E, Brizard A, Huc I, Delville M-H, Oda R (2008) Nano Lett 8:1929

    Article  CAS  Google Scholar 

  20. Wu X, Ruan J, Ohsuna T, Terasaki O, Che S (2007) Chem Mater 19:1577

    Article  CAS  Google Scholar 

  21. de Sousa A, Maria DA, de Sousa RG, de Sousa EMB (2010) J Mater Sci 45:1478. doi:10.1007/s10853-009-4106-3

    Article  Google Scholar 

  22. Chithrani BD, Ghazani AA, Chan WCW (2006) Nano Lett 6:662

    Article  CAS  Google Scholar 

  23. Osaki F, Kanamori T, Sando S, Sera T, Aoyama Y (2004) J Am Chem Soc 126:6520

    Article  CAS  Google Scholar 

  24. Marquis BJ, Love SA, Braun KL, Haynes CL (2009) Analyst 134:425

    Article  CAS  Google Scholar 

  25. Jiang W, Kim BY, Rutka JT, Chan WC (2008) Nat Nanotechnol 3:145

    Article  CAS  Google Scholar 

  26. Huang X, Teng X, Chen D, Tang F, He J (2010) Biomaterials 31:438

    Article  CAS  Google Scholar 

  27. Chen Z, Meng H, Xing G, Chen C, Zhao Y, Jia G, Wang T, Yuan H, Ye C, Zhao F, Chai Z, Zhu C, Fang X, Ma B, Wan L (2006) Toxicol Lett 163:109

    Article  CAS  Google Scholar 

  28. Wang JJ, Sanderson BJ, Wang H (2007) Mutat Res 628:99

    CAS  Google Scholar 

  29. Sung JH, Ji JH, Park JD, Yun JU, Kim DS, Jeon KS, Song MY, Jeong J, Han BS, Han JH, Chung YH, Chang HK, Lee JH, Cho MH, Kelman BJ, Yu IJ (2008) Toxicol Sci 108:452

    Article  Google Scholar 

  30. Ye Y, Liu J, Xu J, Sun L, Chen M, Lan M (2010) Toxicol In Vitro 24:751

    Article  CAS  Google Scholar 

  31. Gong C, Tao G, Yang L, Liu J, Liu Q, Zhuang Z (2010) Biochem Biophys Res Commun 397:397

    Article  CAS  Google Scholar 

  32. Di Pasqua AJ, Sharma KK, Shi Y-L, Toms BB, Ouellette W, Dabrowiak JC, Asefa T (2008) J Inorg Biochem 102:1416

    Article  Google Scholar 

  33. Heikkil T, Santos HA, Kumar N, Murzin DY, Salonen J, Laaksonen T, Peltonen L, Hirvonen J, Lehto V-P (2010) Eur J Pharm Biopharm 74:483

    Article  Google Scholar 

  34. Luo Y, Ling Y, Guo W, Pang J, Liu W, Fang Y, Wen X, Wei K, Gao X (2010) J Control Release 147:278

    Article  CAS  Google Scholar 

  35. Li Y, Shi J, Hua Z, Chen H, Ruan M, Yan D (2003) Nano Lett 3:609

    Article  CAS  Google Scholar 

  36. Rahiala H, Beurroies I, Eklund T, Hakala K, Gougem R, Trens P, Rosenholm TB (1999) J Catal 188:14

    Article  CAS  Google Scholar 

  37. Lee BH, Kim YH, Lee H, Yi J (2001) Microporous Mesoporous Mater 50:77

    Article  CAS  Google Scholar 

  38. Wang F, Gao F, Lan M, Yuan H, Huang Y, Liu J (2009) Toxicol In Vitro 23:808

    Article  CAS  Google Scholar 

  39. Lin W, Huang Y, Zhou X-D, Ma Y (2006) Toxicol Appl Pharmacol 217:252

    Article  CAS  Google Scholar 

  40. Gwinn MR, Vallyathan V (2006) Environ Health Perspect 114:1818

    CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by high technology study plan of China (Grant No. 2007AA021908), Key Project of Chinese National Programs for Fundamental Research and Development (A00102110400). Chinese National Natural Science Foundation grants 30772178 (to X.G.), 30973011 (to X.G.), and 30901496 (to J.P.), the Key Project of Guangdong Provincial Science and Technology Research grant 7117362 (to X.G.) and the Chinese National High-Tech Research and Development Program grant 2007AA021906 (to X.G.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kun Wei or Xin Gao.

Additional information

Wusheng Guo and Yun Luo contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, W., Luo, Y., Wei, K. et al. A cellular level biocompatibility and biosafety evaluation of mesoporous SiO2-based nanocomposite with lanthanum species. J Mater Sci 47, 1514–1521 (2012). https://doi.org/10.1007/s10853-011-5938-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5938-1

Keywords

Navigation