Skip to main content
Log in

Experimental determination and thermodynamic modeling of phase equilibria in the Cu–Cr system

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Liquidus temperatures in the Cu–Cr system at compositions of 10.0–72.7 at.% Cr were determined using electromagnetic levitation melting. The present data agree with the prediction of a recent thermodynamic study of the system for compositions up to 20.0 at.% Cr. However, they show large and positive deviations for other compositions. Microscopic studies reveal that compositions between 10.0 and 50.5 at.% Cr solidified into a dendritic microstructure, whereas those between 55.9 and 72.7 at.% Cr solidified into a droplet-shaped microstructure. The microstructure of the latter type provides direct evidence for the existence of a stable miscibility gap over Cr-rich compositions. Phase equilibria in the Cu–Cr system were calculated using the CALPHAD method. A novel phase diagram was proposed for the Cu–Cr system, which shows a monotectic reaction between compositions of 50.8 and 83.2 at.% Cr at an invariant temperature of 2020 ± 22 K. The novel phase diagram has reduced the discrepancies between the literature data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Slade PG (1994) IEEE Trans Compon Packag Manuf Technol 17:96

    Article  CAS  Google Scholar 

  2. Lee KL (2004) J Mater Sci 39:3047. doi:https://doi.org/10.1023/B:JMSC.0000025831.58057.52

    Article  CAS  Google Scholar 

  3. Hindrichs G (1908) Z Anorg Chem 59:414

    Article  Google Scholar 

  4. Siedschlag E (1923) Z Anorg Chem 131:173

    Article  CAS  Google Scholar 

  5. Leonov M, Bochvar N, Ivanchenko V (1986) Dokl Akad Nauk SSSR 290:888

    CAS  Google Scholar 

  6. Müller R (1988) Siemens Forsch Entwickl Ber 1:105

    Google Scholar 

  7. Kuznetsov GM, Fedorov FN, Rodnyanskayz AL (1977) Sov Non-Ferrous Met Res 3:104

    Google Scholar 

  8. Chakrabarti DJ, Laughlin DE (1984) Bull Alloy Phase Diagr 5:59

    Article  CAS  Google Scholar 

  9. Saunders N (1987) Mater Sci Technol 3:671

    Article  CAS  Google Scholar 

  10. Hämäläinen M, Jääskeläinen K, Luoma R, Nuotio M, Taskinen P, Teppo O (1990) Calphad 14:125

    Article  Google Scholar 

  11. Zeng K, Hämäläinen M (1995) Calphad 19:93

    Article  CAS  Google Scholar 

  12. Michaelsen C, Gente C, Bormann R (1997) J Mater Res 12:1463

    Article  CAS  Google Scholar 

  13. Turchanin MA (2006) Powder Metall Metal Ceram 45:457

    Article  CAS  Google Scholar 

  14. Jacob KT, Priya S, Waseda Y (2000) Z Metallkd 91:594

    CAS  Google Scholar 

  15. Li D, Robinson MB, Rathz TJ (2000) J Phase Equilib 21:136

    Article  CAS  Google Scholar 

  16. Zhou ZM, Gao J, Li F, Zhang YK, Wang YP, Kolbe M (2009) J Mater Sci 44:3793. doi:https://doi.org/10.1007/s10853-009-3511-y

    Article  CAS  Google Scholar 

  17. Adachi M, Schick M, Brillo J, Egry I, Watanabe M (2010) J Mater Sci 45:2002. doi:https://doi.org/10.1007/s10853-009-4149-5

    Article  CAS  Google Scholar 

  18. Munitz A, Bamberger M, Venkert A, Landau P, Abbaschian R (2009) J Mater Sci 44:64. doi:https://doi.org/10.1007/s10853-008-3115-y

    Article  CAS  Google Scholar 

  19. Anderson CD, Hofmeister WH, Bayuzick RJ (1993) Metall Trans A 24:61

    Article  Google Scholar 

  20. Dinsdale AT (1991) Calphad 15:317

    Article  CAS  Google Scholar 

  21. Verhoeven JD, Gibson ED (1978) J Mater Sci 13:1576. doi:https://doi.org/10.1007/BF00553214

    Article  CAS  Google Scholar 

  22. Cooper KP, Ayers JD, Malzahn Kampe JC, Feng CR, Locci IE (1991) Mater Sci Eng A 142:221

    Article  Google Scholar 

  23. Sun Z, Zhang C, Zhu Y, Zhang C, Yang Z, Ding B, Song X (2003) J Alloys Compd 361:165

    Article  CAS  Google Scholar 

  24. Zhou ZM, Wang YP, Gao J, Kolbe M (2005) Mater Sci Eng A 398:318

    Article  Google Scholar 

  25. Gao J, Wang YP, Zhou ZM, Kolbe M (2007) Mater Sci Eng A 449–451:654

    Article  Google Scholar 

  26. One K, Nishi S, Oishi T (1984) Trans Jpn Inst Mater 11:810

    Article  Google Scholar 

  27. Timberg L, Toguri JM (1982) J Chem Thermodyn 14:193

    Article  CAS  Google Scholar 

  28. Andersson JO (1985) Int J Thermodyn 6:411

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study is financially supported by the National Natural Science Foundation of China (50571025 and 50871078) and by the Ministry of Education (NCET05-0292). The authors thank Dr. H. Nagaumi for providing high purity chromium material. The authors also thank Dr. Jingbo Li for discussions. The authors are indebted to Mr. G. Luo for his assistance in experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Z.M., Gao, J., Li, F. et al. Experimental determination and thermodynamic modeling of phase equilibria in the Cu–Cr system. J Mater Sci 46, 7039–7045 (2011). https://doi.org/10.1007/s10853-011-5672-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5672-8

Keywords

Navigation