Skip to main content
Log in

Dynamics of grain boundaries under applied mechanical stress

  • IIB 2010
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Recent results of experimental research into stress-induced grain boundary migration in aluminum bicrystals are reported. Boundary migration under a shear stress was observed to be coupled to a lateral translation of the grains for planar symmetrical 〈100〉 tilt boundaries. This coupling proved to be the typical migration mode of any 〈100〉 tilt boundary, no matter whether low- or high-angle, low Σ CSL coincidence or non-coincidence boundary. The measured ratios of normal boundary motion to the tangential displacement of grains are in an excellent agreement with theoretical predictions. The migration-shear coupling is also observed for asymmetrical 〈100〉 boundaries. Measurements of the temperature dependence of coupled boundary migration revealed that there is a specific misorientation dependence of migration activation parameters. Grain boundaries can act during their motion under the applied stress as sources of lattice dislocations that leads to the generation and growth of new grains in the boundary region. The rate of stress-induced boundary migration decreases with increasing solute content in aluminum. Both the migration activation enthalpy and the pre-exponential mobility factor were found to increase with rising impurity concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Kammrath & Weiss company.

  2. a4i Docu+IMES supplied by Aquinto company.

References

  1. Haslam A, Moldovan D, Yamakov V, Wolf D, Phillpot S, Gleiter H (2003) Acta Mater 51:2112

    Article  Google Scholar 

  2. Farkas D, Frøseth A, Van Swygenhoven H (2006) Scripta Mater 55:695

    Article  CAS  Google Scholar 

  3. Gianola GS, Van Petegem S, Legros M, Brandstetter S, Van Swygenhoven H, Hemker KJ (2006) Acta Mater 54:2253

    Article  CAS  Google Scholar 

  4. Legros M, Gianola GS, Hemker KJ (2008) Acta Mater 56:3380

    Article  CAS  Google Scholar 

  5. Rupert TJ, Gianola DS, Gan Y, Hemker KJ (2009) Science 326:1686

    Article  CAS  Google Scholar 

  6. Mompiou F, Caillard D, Legros M (2009) Acta Mater 57:2198

    Article  CAS  Google Scholar 

  7. Read WT, Shockley W (1950) Phys Rev 78:275

    Article  CAS  Google Scholar 

  8. Washburn J, Parker ER (1952) Trans AIME 194:1076

    Google Scholar 

  9. Li CH, Edwards EH, Washburn J, Parker ER (1953) Acta Metall 1:223

    Article  CAS  Google Scholar 

  10. Bainbridge DW, Li CH, Edwards EH (1954) Acta Metall 2:322

    Article  CAS  Google Scholar 

  11. Watanabe T, Kimura SI, Karashima S (1984) Philos Mag A 49:845

    Article  Google Scholar 

  12. Horiuchi R, Fukutomi H, Takahashi T (1987) In: Ishida Y (ed) Fundamentals of diffusion bonding. Elsevier, Amsterdam, p 347

    Google Scholar 

  13. Fukutomi H, Kamijo T (1985) Scripta Metall 19:195

    Article  CAS  Google Scholar 

  14. Fukutomi H, Iseki T, Endo T, Kamijo T (1991) Acta Metall Mater 39:1445

    Article  CAS  Google Scholar 

  15. Sheikh-Ali AD, Valiev RZ (1990) Phys Status Solidi (a) 117:429

    Article  CAS  Google Scholar 

  16. Sheikh-Ali AD, Lavrentyev FF, YuG Kazarov (1997) Acta Mater 45:4505

    Article  CAS  Google Scholar 

  17. Sheikh-Ali AD, Szpunar JA (1998) Mater Sci Eng A245:49

    CAS  Google Scholar 

  18. Yoshida H, Yokoyama K, Shibata N, Ikuhara Y, Sakuma T (2004) Acta Mater 52:2349

    Article  CAS  Google Scholar 

  19. Cahn JW, Mishin Y, Suzuki A (2006) Philos Mag 86:3965

    Article  CAS  Google Scholar 

  20. Cahn JW, Mishin Y, Suzuki A (2006) Acta Mater 54:4953

    Article  CAS  Google Scholar 

  21. Caillard D, Mompiou F, Legros M (2009) Acta Mater 57:2390

    Article  CAS  Google Scholar 

  22. Mompiou F, Legros M, Caillard D (2010) Acta Mater 58:3676

    Article  CAS  Google Scholar 

  23. Suzuki A, Mishin Y (2005) Mater Sci Forum 502:157

    Article  CAS  Google Scholar 

  24. Ivanov VA, Mishin Y (2008) Phys Rev B 78:064106

    Article  Google Scholar 

  25. Zhang H, Du D, Srolovitz DJ (2008) Philos Mag 88:243

    Article  CAS  Google Scholar 

  26. Elsener A, Politano O, Derlet PM, Van Swygenhoven H (2009) Acta Mater 57:1988

    Article  CAS  Google Scholar 

  27. Molodov DA, Ivanov VA, Gottstein G (2007) Acta Mater 55:1843

    Article  CAS  Google Scholar 

  28. Molodov DA, Gorkaya T, Gottstein G (2007) Mater Sci Forum 558–559:927

    Article  Google Scholar 

  29. Gorkaya T, Molodov DA, Gottstein G (2009) Acta Mater 57:5396

    Article  CAS  Google Scholar 

  30. Gorkaya T, Burlet T, Molodov DA, Gottstein G (2010) Scripta Mater 63:633

    Article  CAS  Google Scholar 

  31. Sutton AP, Balluffi RW (1995) Interfaces in crystalline materials. Clarendon, Oxford

    Google Scholar 

  32. Cahn JW, Taylor JE (2004) Acta Mater 52:4887

    Article  CAS  Google Scholar 

  33. Kirch DM (2008) In Situ SEM investigation of individual and connected grain boundaries in aluminum. Cuvillier Verlag, Göttingen

    Google Scholar 

  34. Kirch DM, Jannot E, Barrales-Mora LA, Molodov DA, Gottstein G (2008) Acta Mater 56:4998

    Article  CAS  Google Scholar 

  35. Gottstein G, Molodov DA, Czubayko U, Shvindlerman LS (1995) J de Phys IV 5:89

    Google Scholar 

  36. Molodov DA, Czubayko U, Gottstein G, Shvindlerman LS (1998) Acta Mater 46:553

    Article  CAS  Google Scholar 

  37. Lücke K, Detert K (1957) Acta Metall 5:628

    Article  Google Scholar 

  38. Cahn JW (1962) Acta Metall 10:789

    Article  CAS  Google Scholar 

  39. Lücke K, Stüwe H (1963) In: Himmel L (ed) Recovery and recrystallization of metals. Interscience, New York, p 131

    Google Scholar 

  40. Surholt T, Molodov DA, Chr Herzig (1998) Acta Mater 46:5345

    Article  CAS  Google Scholar 

  41. Aleshin AN, Faulkner RG, Molodov DA, Shvindlerman LS (2002) Interface Sci 10:5

    Article  CAS  Google Scholar 

  42. Kurzydlowski K, Celinski Z, Grabski MM (1980) Res Mech 1:283

    CAS  Google Scholar 

  43. Celinski Z, Kurzydlowski K (1982) Res Mech 5:89

    Google Scholar 

  44. Hirth JP, Lothe J (1982) Theory of dislocations. Wiley, New York

    Google Scholar 

  45. Varin RA, Kurzydlowski K, Tangri K (1987) Mater Sci Eng 85:115

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the Deutsche Forschungsgemeinschaft for financial support (Grant MO 848/10-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitri A. Molodov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molodov, D.A., Gorkaya, T. & Gottstein, G. Dynamics of grain boundaries under applied mechanical stress. J Mater Sci 46, 4318–4326 (2011). https://doi.org/10.1007/s10853-010-5233-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-5233-6

Keywords

Navigation