Skip to main content
Log in

Mechanism of zinc oxide–aluminum aluminothermic reaction

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, the aluminothermic reaction of a mixture of aluminum and zinc oxide powders ball milled at ambient temperature was investigated employing X-ray diffraction (XRD), differential thermal analysis (DTA), and electron microscopy (SEM) techniques. The kinetics of the reaction was studied based on DTA results to evaluate the mechanism and the activation energy of the reaction. The reaction mechanism was recognized to be an interface controlled one. The activation energy as well as the ignition temperature of the aluminothermic reaction was found to decrease significantly with increasing the milling time. The ignition temperature of the reaction was reduced from 1008 °C for the unmilled mixture to 563 °C for the mixture milled for 60 min. This was rationalized in terms of the microstructural changes observed in the milled mixtures. The activation energy also decreased from 848 kJ/mol for the unmilled mixture to 119 kJ/mol for the mixture milled for 60 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mei J, Halldearn RD, Xiao P (1999) Scripta Mater 41:541

    Article  CAS  Google Scholar 

  2. Huang ZJ, Yang B, Cui H, Duan XJ, Zhang JS (2001) J Mater Sci Lett 20:1749

    Article  CAS  Google Scholar 

  3. Wang S, Liang K, Zhang X, Li H, Gu S (2002) Key Eng Mater 224–226:745

    Article  Google Scholar 

  4. Huang Z, Yang B, Cui H, Zhang (2003) Mater Sci Eng A 351:15

    Article  Google Scholar 

  5. Peng HX, Wang DZ, Geng L, Yao CK (1997) Scripta Mater 37:199

    Article  CAS  Google Scholar 

  6. Maity PC, Chakraborty PN, Panigrahi SC (1994) Mater Lett 20:93

    Article  CAS  Google Scholar 

  7. Woo KD, Huo HW (2006) Met Mater Int 12:45

    Article  CAS  Google Scholar 

  8. Woo KD, Na HS, Kim SW, Sato T, Kamio A (2001) Met Mater Int 7:613

    Article  CAS  Google Scholar 

  9. Maity PC, Chakraborty PN, Panigrahi SC (1997) Mater Lett 30:147

    Article  CAS  Google Scholar 

  10. Geng K, Lu W, Zhang D (2003) J Mater Sci Lett 22:877

    Article  CAS  Google Scholar 

  11. Li YF, Qin CD, Ng DHL (1999) J Mater Res 44:2997

    Article  ADS  Google Scholar 

  12. Subramanian R, McKamey CG, Schneibel JH, Buck LR, Menchhofer PA (1998) Mater Sci Eng A 254:119

    Article  Google Scholar 

  13. Yu P, Deng CJ, Ma NG, Ng DHL (2004) Mater Lett 58:679

    Article  CAS  Google Scholar 

  14. Durai TG, Das K, Das S (2007) Mater Sci Eng A 445–446:100

    Google Scholar 

  15. Kobashi M, Choh T (1992) J Jpn Inst Light Metals 42:138

    CAS  Google Scholar 

  16. Chen G, Sun G (1998) Mater Sci Eng A 244:291

    Article  Google Scholar 

  17. Maleki A, Meratian M, Niroumand B, Gupta M (2008) Metall Mater Trans A 39A:3034

    Article  CAS  ADS  Google Scholar 

  18. Haines PJ (2002) Principles of thermal analysis and calorimetry. Royal society of chemistry, Cambridge

    Book  Google Scholar 

  19. Wu JM (2001) Mater Lett 48:324

    Article  CAS  Google Scholar 

  20. Gaskell DR (2003) Introduction to the thermodynamics of materials. Taylor & Francis, London

    Google Scholar 

  21. Sarangi B, Sarangi A, Ray HS (1996) ISIJ Int 36:1135

    Article  CAS  Google Scholar 

  22. Dickinson CF, Heal GR (1999) Thermochim Acta 340–341:89

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Prof. Manoj GUPTA from National University of Singapore (NUS) for his helpful comments and his cooperation in carrying out parts of the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmood Meratian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maleki, A., Panjepour, M., Niroumand, B. et al. Mechanism of zinc oxide–aluminum aluminothermic reaction. J Mater Sci 45, 5574–5580 (2010). https://doi.org/10.1007/s10853-010-4619-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4619-9

Keywords

Navigation