Skip to main content
Log in

Physiochemical characterizations of electrospun (ZnO–GeO2) nanofibers and their optical properties

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, nanofiber mats consisting of two potential metal oxides were produced by electrospinning technique. An aqueous solution of zinc acetate dihydrate and germanium isopropoxide was mixed with polyvinyl alcohol solution to prepare a sol–gel that was electrospun at 20 kV. The obtained nanofiber mats were dried under a vacuum at 80 °C for 24 h and then calcined in air at different temperatures and soaking times. Physiochemical characterizations have affirmed that nanofibers composed of zinc oxide-germanium dioxide (ZnO–GeO2) can be prepared by calcination at different temperatures. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and the Brunauer–Emmett–Teller (BET) technique were employed to characterize the as-spun nanofibers and the calcined product. The specific surface area of the calcined product decreased with increases in temperature. X-ray powder diffractometery (XRD) analysis was used to study the chemical composition and the crystallographic structure. The optical properties of the as-prepared ZnO–GeO2 nanofibers were also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kanjwal MA, Barakat NAM, Sheikh FA, Khil MS, Kim HY (2008) J Mater Sci 43:5489. doi:10.1007/s10853-008-2835-3

    Article  CAS  ADS  Google Scholar 

  2. Dai HQ, Gong J, Kim HY, Lee D (2002) Nanotechnology 13:674

    Article  CAS  ADS  Google Scholar 

  3. Dharmaraj N, Kim CK, Prabu P, Ding B, Kim HY, Viswanathamurthi P (2007) Int J Electrospun Nanofibers Appl 1:63

    Google Scholar 

  4. Yuh JH, Nino JC, Sigmund WM (2005) Mater Lett 59:3645

    Article  CAS  Google Scholar 

  5. Ju YW, Park JH, Jung HR, Choa SJ, Lee WJ (2008) Mater Sci Eng B 147:7

    Article  CAS  Google Scholar 

  6. Peng XS, Meng GW, Wang XF, Wang YW, Zhang J, Liu X (2002) Chem Mater 14:4490

    Article  CAS  Google Scholar 

  7. Zhou XF, Zhao Y, Cao X, Xue YF, Xu DP, Jiang L (2008) Mater Lett 62:470

    Article  CAS  Google Scholar 

  8. Shaoa CL, Yua N, Liu YC, Mu RX (2006) J Phys Chem Solids 67:1423

    Article  ADS  Google Scholar 

  9. Yu N, Shao CL, Liu YC, Guan HY, Yang XH (2005) J Colloid Interface Sci 285:163

    Article  CAS  PubMed  Google Scholar 

  10. Liping Z, Jiesheng L, Zhizhen Y, Haiping H, Xiaojun C, Binghui Z (2008) Opt Mater 31:237

    Article  Google Scholar 

  11. Hiroyuki U (2007) J Phys Chem C 111:9060

    Article  Google Scholar 

  12. Tang HP, Zhu LP, He HP, Ye ZZ, Zhang Y, Zhi MJ, Yang ZX, Zhao BH, Li TX (2006) J Phys D Appl Phys 39:2696

    Article  CAS  ADS  Google Scholar 

  13. Chiu SJ, Lee MY, Chen HW, Chou WG, Lin LY (2002) Chem Biol Interact 141:211

    Article  CAS  PubMed  Google Scholar 

  14. Grossi V, Parisse P, Passacantando M, Santucci S, Impellizzeri G, Irrera A, Ottaviano L (2008) Appl Surf Sci 254:8093

    Article  CAS  ADS  Google Scholar 

  15. Maeda Y, Tsukamoto N, Yazawa Y, Kanemitsu Y, Masumoto Y (1991) Appl Phys Lett 59:3168

    Article  CAS  ADS  Google Scholar 

  16. Sadah JA, Tabet N, Salim M (2001) J Electron Spectrosc Relat Phenom 114:409

    Article  Google Scholar 

  17. Jiang M, Wang Z, Ning Z (2009) Thin Solid Films 517:6717

    Article  CAS  Google Scholar 

  18. Yu YS, Kim GY, Min BH, Kim SC (2004) J Eur Ceram Soc 24:1865

    Article  CAS  Google Scholar 

  19. Zheng T, Li Z, Chen J, Shen K, Sun K (2006) Appl Surf Sci 252:8482

    Article  CAS  ADS  Google Scholar 

  20. Zhang X, Chen Y, Jia C, Su Y, Li Q, liu L, Gou T, Wei M (2009) J Phys Chem C 113:13689

    Article  CAS  Google Scholar 

  21. Leung YH, Djuris AB, Choy WCH, Xie MH, Gao J, Cheah KW, Man KYK, Chan WK (2005) J Cryst Growth 274:430

    Article  CAS  ADS  Google Scholar 

  22. Li D, Xia YN (2004) Adv Mater 16:1151

    Article  CAS  Google Scholar 

  23. Li D, McCann JT, Xia YN (2006) J Am Ceram Soc 89:1861

    Article  CAS  Google Scholar 

  24. Greiner A, Wendorff JH (2007) Angew Chem Int Ed 46:5670

    Article  CAS  Google Scholar 

  25. Viswanathamurthi P, Bhattarai N, Kim CK, Kim HY, Lee DR (2004) Inorg Chem Commun 7:679

    Article  CAS  Google Scholar 

  26. Kanjwal MA, Barakat NAM, Sheikh FA, Khil MS, Kim HY (2009) Int J Appl Ceram Technol X:1

  27. Formhals A (1934) US Patent 1,975,504

  28. Yang Y, Chen H, Zhao B, Bao X (2004) J Cryst Growth 263:447

    Article  CAS  ADS  Google Scholar 

  29. Lua L, Sahajwalla V, Kong C, Harris D (2001) Carbon 39:1821

    Article  Google Scholar 

  30. Que W, Wang LL, Chen T, Sun Z, Hu X (2006) J Sol-Gel Sci Technol 38:147

    Article  CAS  Google Scholar 

  31. Ballerini G, Ogle K, Labrousse MGB (2007) Appl Surf Sci 253:6860

    Article  CAS  ADS  Google Scholar 

  32. Molle A, Bhuiyan MNK, Tallarida G, Fanciulli M (2006) Mater Sci Semicond Process 9:673

    Article  CAS  Google Scholar 

  33. Umar A, Hahn YB (2006) Nanotechnology 17:2174

    Article  CAS  ADS  Google Scholar 

  34. Djuri AB, Leung YH, Choy WCH, Cheah KW, Chan WK (2004) Appl Phys Lett 84:2635

    Article  ADS  Google Scholar 

  35. Zhao L, Lian JS, Liu YH, Jiang Q (2008) Trans Nonferrous Met Soc China 18:145

    Article  CAS  Google Scholar 

  36. Gu F, Wang SF, Lu MK, Zhou GJ, Xu D, Yuan DR (2004) J Phys Chem B 108:8119

    Article  CAS  Google Scholar 

  37. Gu F, Wang SF, Lu MK, Cheng XF, Liu SW, Zhou GJ, Xu D, Yuan DR (2004) J Cryst Growth 262:182

    Article  CAS  ADS  Google Scholar 

  38. Gu F, Li CZ, Hu YJ, Zhang L (2007) J Cryst Growth 304:369

    Article  CAS  ADS  Google Scholar 

  39. Dare-Edwards MP, Goodenough JB, Hammett A, Trevellick PR (1983) J Chem Soc Faraday Trans 79:2027

    Article  CAS  Google Scholar 

  40. Xu R, Zeng HC (2004) Langmuir 20:9780

    Article  CAS  PubMed  Google Scholar 

  41. Barakat NAM, Woo KD, Kanjwal MA, Kim HY (2008) Langmuir 24:11982

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from the Korean Ministry of Education, Science and Technology (The Regional Core Research Program/Center for Healthcare Technology & Development, Chonbuk National University, Jeonju 561-756 Republic of Korea). We thank Mr. T. S. Bae and J. C. Lim, KBSI, Jeonju branch, and Mr. Jong- Gyun Kang, Centre for University Research Facility, for taking the high-quality FE-SEM and TEM images, respectively.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nasser A. M. Barakat or Hak Yong Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanjwal, M.A., Barakat, N.A.M., Sheikh, F.A. et al. Physiochemical characterizations of electrospun (ZnO–GeO2) nanofibers and their optical properties. J Mater Sci 45, 3833–3840 (2010). https://doi.org/10.1007/s10853-010-4438-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4438-z

Keywords

Navigation