Skip to main content
Log in

The characteristics of granular-bright facet in hydrogen pre-charged and uncharged high strength steels in the very high cycle fatigue regime

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, the effect of hydrogen on fatigue strength of high strength steels in the very high cycle fatigue regime was further discussed. It is found that the calculated results of fatigue strength by modified Murakami’s expression are in good accordance with the experimental results in ±15% error band. The relationship between fatigue life (N f) and the ratio of granular-bright facet (GBF) to inclusion size \( \left({\frac{{\sqrt {A_{\text{GBF}} } }}{{\sqrt {A_{\text{inc}} } }}}\right) \) for quenching and tempering (QT) specimens and pre-charged specimens by soaking (SK) and cathodic (CD) charging can be approximately expressed by \( {\frac{{\sqrt {A_{\text{GBF}} } }}{{\sqrt {A_{\text{inc}} } }}} = {\frac{{R_{\text{GBF}} }}{{R_{\text{inc}} }}} = 0. 2 5N_{\text{f}}^{ 0. 1 2 5} \); however, the value of \( {\frac{{\sqrt {A_{\text{GBF}} } }}{{\sqrt {A_{\text{inc}} } }}} \) for specimens pre-charged by high-pressure thermal hydrogen charging is obviously greater than that for QT specimens and pre-charged specimens by SK and CD charging at an identical N f. The stress intensity factor range at the periphery of the GBF, ΔK GBF, was calculated in this work. It is found that the value of ΔK GBF is not a constant but approximately proportional to \( (\sqrt {A_{\text{GBF}} } )^{ 1/ 3} \). Besides it is also found that ΔK GBF decreases with the increase of hydrogen content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yang ZG, Li SX, Zhang JM, Li GY, Li ZB, Hui WJ, Weng YQ (2004) Acta Mater 52:5235

    Article  CAS  Google Scholar 

  2. Murakami Y, Nomoto T, Ueda T (2000) Fatigue Fract Eng Mater Struct 23:893

    Article  CAS  Google Scholar 

  3. Murakami Y, Nomoto T, Ueda T (2000) Fatigue Fract Eng Mater Struct 23:903

    Article  CAS  Google Scholar 

  4. Murakami Y (2002) Metal fatigue: effects of small defects and nonmetallic inclusions. Elsevier, Amsterdam & Boston, p 273

    Book  Google Scholar 

  5. Shiozawa K, Lu L, Ishihara S (2001) Fatigue Fract Eng Mater Struct 24:781

    Article  CAS  Google Scholar 

  6. Shiozawa K, Morii Y, Nishino S, Lu L (2006) Int J Fatigue 28:1521

    Article  CAS  Google Scholar 

  7. Yang ZG, Li SX, Liu YB, Li YD, Li GY, Hui WJ, Weng YQ (2008) Int J Fatigue 30:1016

    Article  CAS  Google Scholar 

  8. Garet M, Brass AM, Haut C, Guttierez-Solana F (1998) Corros Sci 40:1073

    Article  CAS  Google Scholar 

  9. Oriani RA, Hirth JP, Smialowski M (1985) Hydrogen degradation of ferrous alloys. Noyes Publ, Park, Ridge

    Google Scholar 

  10. Li YD, Yang ZG, Li SX, Liu YB, Chen SM, Hui WJ, Weng YQ (2009) Adv Eng Mater 11(7):561

    Article  CAS  Google Scholar 

  11. Li YD, Yang ZG, Li SX, Li SX, Li GY, Hui WJ, Weng YQ (2008) Mater Sci Eng A 498:373

    Article  Google Scholar 

  12. Yang ZG, Zhang JM, Li SX, Li GY, Wang QY, Hui WJ, Weng YQ (2006) Mater Sci Eng A 427:167

    Article  Google Scholar 

  13. Murakami Y (2002) Metal fatigue: effects of small defects and nonmetallic inclusions. Elsevier, Amsterdam & Boston, p 94

    Google Scholar 

  14. Oriani RA, Hirth JP, Smialowski M (1985) Hydrogen degradation of ferrous alloys. Noyes Publ., Park Ridge, p 718

    Google Scholar 

  15. Onyevuenyi OA, Hirth JP (1981) Scr Met 115:113

    Article  Google Scholar 

  16. Chapetti MD, Tagawa T, Miyata T (2003) Mater Sci Eng A 356:236

    Article  Google Scholar 

  17. Bathias C (1999) Fatigue Fract Eng Mater Struct 22:559

    Article  CAS  Google Scholar 

  18. Murakami Y (2002) In: Proceeding of the eighth international fatigue congress (Fatigue 2002), EMAS Ltd., vol 5, p 2927

  19. Murakami Y, Yokoyama NN, Kenichi T (2001) J Soc Mater Sci Jpn 50(11):1068

    Article  CAS  Google Scholar 

  20. Murakami Y, Yokoyama NN, Nagata J (2002) Fatigue Fract Eng Mater Struct 25:735

    Article  CAS  Google Scholar 

  21. Murakami Y (2002) Metal fatigue: effects of small defects and nonmetallic inclusions. Elsevier, Amsterdam & Boston, p 17

    Google Scholar 

  22. Sakai T, Sato Y, Oguma N (2002) Fatigue Fract Eng Mater Struct 25:765

    Article  CAS  Google Scholar 

  23. Nakajima M, Kamiya M, Itoga H, Tokaji K, Ko HN (2006) Int J Fatigue 28:1540

    Article  CAS  Google Scholar 

  24. Liu YB, Yang ZG, Li YD, Chen SM, Li SX, Hui WJ, Weng YQ (2008) Mater Sci Eng A 497:408

    Article  Google Scholar 

Download references

Acknowledgement

This work was financially supported by key project of basic research of China (2004CB619100). The authors wish to thank Prof. L. J. Rong, Dr. J. Zhang, and Prof. G. Y. Li for their useful advice and experimental supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. D. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y.D., Chen, S.M., Liu, Y.B. et al. The characteristics of granular-bright facet in hydrogen pre-charged and uncharged high strength steels in the very high cycle fatigue regime. J Mater Sci 45, 831–841 (2010). https://doi.org/10.1007/s10853-009-4007-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-4007-5

Keywords

Navigation