Skip to main content
Log in

Spallation of two thermal barrier coating systems: experimental study of adhesion and energetic approach to lifetime during cyclic oxidation

  • Interface Science in Thermal Barrier Coatings
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

To understand the degradation of two thermal barrier coating (TBC) systems, we determined the adhesion energy between the bondcoat and the topcoat and its evolution during cyclic oxidation at 1,100 °C, by means of a modified 4-point bending test. An yttria stabilized zirconia (YSZ) ceramic topcoat was deposited by electron beam physical vapour deposition (EBPVD) on a Ni-based superalloy with either an intermediate β-(Ni,Pt)Al bondcoat or a newly developed Zr-doped β-NiAl bondcoat. Although a similar evolution of the adhesion energy during cyclic oxidation has been recorded for both systems, observations of the fracture surfaces combined with a microstructure study revealed different degradation mechanisms. An energetic model of spallation is applied to predict their lifetime. According to this approach, the TBC failure is induced by the accumulation of strain energy in the ceramic layers and resisted by the interfacial fracture toughness. The predicted lifetime is consistent with experiments for both systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. In the case of remaining alumina blocks onto the β-(Ni,Pt)Al bondcoat, this energy was lowered according to the fraction part area of standing adhesive TGO, as measured on fracture surfaces.

References

  1. Mumm DR, Evans AG (2000) Acta Mater 48:1815

    Article  CAS  Google Scholar 

  2. Vasinonta A, Beuth JL (2001) Eng Fract Mech 68:843

    Article  Google Scholar 

  3. Watanabe M, Kuroda S, Yokoyama K et al (2008) Surf Coat Technol 202:1746

    Article  CAS  Google Scholar 

  4. Guerre C (2002) PhD Thesis, Ecole Nationale Supérieure des Mines de Paris

  5. Kim S, Liu Y, Kagawa Y (2007) Acta Mater 55:3771

    Article  CAS  Google Scholar 

  6. Arai M, Okajima Y, Kishimoto K (2007) Eng Fract Mech 74:2055

    Article  Google Scholar 

  7. Charalambides PG, Jund J, Evans AG, McMeeking RM (1989) J Appl Mech 56:77

    Article  Google Scholar 

  8. Gan Z, Mhaisalkar SG, Chen Z et al (2005) Surf Coat Technol 198:85

    Article  CAS  Google Scholar 

  9. Li H, Khor KA, Cheang P (2007) Eng Fract Mech 74:1894

    Article  Google Scholar 

  10. Hofinger I, Oechsner M, Bahr HA et al (1998) Int J Fracture 92:213

    Article  CAS  Google Scholar 

  11. Quian L, Zhu S, Kagawa Y (2003) In: 27th international conference on advanced ceramics and composites: a (Cocoa Beach, FL, USA), vol 24, issue 3, p 503

  12. Yamasaki Y, Schmidt A, Scholz A (2006) Surf Coat Technol 201:744

    Article  Google Scholar 

  13. Bahr HA, Balke H, Fett T et al (2003) Mater Sci Eng A 362:2

    Article  Google Scholar 

  14. Théry PY (2007) Thèse de Doctorat, Universite Joseph Fourier Grenoble, France, Matériaux et Génie des Procédés

  15. Théry PY, Poulain M, Dupeux M, Braccini M (2007) Surf Coat Technol 202:648

    Article  Google Scholar 

  16. Noebe RD, Bowman RR, Nathal MV (1993) Int Mater Rev 38:193

    Article  CAS  Google Scholar 

  17. Li YZ, Wang C, Chan HM et al (1999) J Am Ceram Soc 82:1497

    Article  CAS  Google Scholar 

  18. Evans AG, Mumm DR, Hutchinson JW et al (2001) Prog Mater Sci 46:505

    Article  Google Scholar 

  19. Hutchinson JW, Evans AG (2002) Surf Coat Technol 149:179

    Article  CAS  Google Scholar 

  20. Xu T, Faulhaber S, Mercer C et al (2004) Acta Mater 52:1439

    Article  CAS  Google Scholar 

  21. Spitsberg IT, Mumm DR, Evans AG (2005) Mater Sci Eng A 394:176

    Article  Google Scholar 

  22. Zhao X, Wang X, Xiao P (2006) Surf Coat Technol 200:5946

    Article  CAS  Google Scholar 

  23. Shih CF (1991) Mater Sci Eng A 143:77

    Article  Google Scholar 

  24. Faulhaber S, Mercer C, Moon MW et al (2006) J Mech Phys Solids 54:1004

    Article  CAS  Google Scholar 

  25. Hutchinson JW, Suo Z (1992) Adv Appl Mech 29:63

    Article  Google Scholar 

  26. Wang JS, Evans AG (1998) Acta Mater 46:4993

    Article  CAS  Google Scholar 

  27. Wang JS, Evans AG (1999) Acta Mater 47:699

    Article  CAS  Google Scholar 

  28. Lipkin DM, Clarke DR, Hollatz M et al (1997) Corr Sci 39:231

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are indebted to Dr. R. Mevrel (ONERA) for helpful discussions during the course of this study, and to Dr. N. Terrien (ONERA) for his assistance in the PLPS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Poulain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Théry, PY., Poulain, M., Dupeux, M. et al. Spallation of two thermal barrier coating systems: experimental study of adhesion and energetic approach to lifetime during cyclic oxidation. J Mater Sci 44, 1726–1733 (2009). https://doi.org/10.1007/s10853-008-3108-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-3108-x

Keywords

Navigation