Skip to main content
Log in

Two-step synthesis of polyacrylamide/polyacrylate interpenetrating network hydrogels and its swelling/deswelling properties

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A two-step polymerization technique is introduced to synthesize polyacrylamide/polyacrylate interpenetrating network (PAM/PAC IPN) hydrogels. The swelling ratio of the IPN hydrogel increases with the increase of the PAC content in PAM/PAC, and is smaller than the traditional PAM or PAC superabsorbents. A non-Fickian mechanism is observed in the swelling process, and the swelling changes from non-Fickian mechanism to Fickian mechanism with the increase of polyacrylate dosage in the hydrogel. The IPN hydrogel has typical pH-sensitivity and on–off effect. The deswelling properties and methyl orange dye removal are carried out based on the chelation of the carboxylic/carboxylate groups on the hydrogels with multivalent cations in solution. The hydrogel is expected to be used in the removal of heavy metal ions and dyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Buchholz F, Grajam A (1997) Modern superabsorbent polymer technology. Wiley-VCH, New York

    Google Scholar 

  2. Tang QW, Lin JM, Wu JH (2007) J Appl Polym Sci 104:735. doi:https://doi.org/10.1002/app.25531

    Article  CAS  Google Scholar 

  3. Fanta GF, Doane WM (1986) Grafted starches. In: Wurzburg OB (ed) Modified starches: properties and uses. CRC Press, pp 149–178

  4. Tang QW, Lin JM, Wu JH (2007) Carbohydr Polym 67:332. doi:https://doi.org/10.1016/j.carbpol.2006.05.026

    Article  CAS  Google Scholar 

  5. Yetimoglu EK, Kahraman MV, Ercan O (2007) React Funct Polym 67:451. doi:https://doi.org/10.1016/j.reactfunctpolym.2007.02.007

    Article  CAS  Google Scholar 

  6. Yan WL, Bai RB (2005) Water Res 39:688. doi:https://doi.org/10.1016/j.watres.2004.11.007

    Article  CAS  Google Scholar 

  7. Ali AE, Shawky HA, Rehim HA (2003) Eur Polym J 39:2337. doi:https://doi.org/10.1016/S0014-3057(03)00150-2

    Article  Google Scholar 

  8. Owens DE, Jian Y, Fang JE, Slaughter BV, Chen YH, Peppas NA (2007) Macromolecules 40:7306. doi:https://doi.org/10.1021/ma071089x

    Article  CAS  Google Scholar 

  9. Zhang J, Peppas NA (2000) Macromolecules 33:102. doi:https://doi.org/10.1021/ma991398q

    Article  CAS  Google Scholar 

  10. Tang QW, Wu JH, Lin JM (2008) e-Polymers 21:1

    Google Scholar 

  11. Tang QW, Wu JH, Lin JM (2008) Carbohydr Polym 73:315. doi:https://doi.org/10.1016/j.carbpol.2007.12.030

    Article  CAS  Google Scholar 

  12. Yang ZW, Jiang YS, Xu LX, Wen B, Li FF, Sun SM et al (2005) J Mater Chem 15:1807. doi:https://doi.org/10.1039/b418015c

    Article  CAS  Google Scholar 

  13. Wu JH, Wei YL, Lin JM (2003) Polymer (Guildf) 44:6513. doi:https://doi.org/10.1016/S0032-3861(03)00728-6

    Article  CAS  Google Scholar 

  14. Omidan H, Hashemi SA, Sammes PG (1998) Polymer (Guildf) 39:6697. doi:https://doi.org/10.1016/S0032-3861(98)00095-0

    Article  Google Scholar 

  15. Li A, Wang AQ (2005) Eur Polym J 41:1630. doi:https://doi.org/10.1016/j.eurpolymj.2005.01.028

    Article  CAS  Google Scholar 

  16. Firestone BA, Siegel RA (1991) J Appl Polym Sci 43:901. doi:https://doi.org/10.1002/app.1991.070430507

    Article  CAS  Google Scholar 

  17. Pourjavadi A, Barzegar SH, Zeidabadi F (2007) React Funct Polym 67:644. doi:https://doi.org/10.1016/j.reactfunctpolym.2007.04.007

    Article  CAS  Google Scholar 

  18. Mullarney MP, Seery T, Weiss RA (2006) Polymer (Guildf) 47:3845. doi:https://doi.org/10.1016/j.polymer.2006.03.096

    Article  CAS  Google Scholar 

  19. Lin YH, Liang HF, Chung CK (2005) Biomaterials 26:2105. doi:https://doi.org/10.1016/j.biomaterials.2004.06.011

    Article  CAS  Google Scholar 

  20. Zimmermann H, Wahlisch F, Baier C (2006) Biomaterials 28:1327. doi:https://doi.org/10.1016/j.biomaterials.2006.11.032

    Article  Google Scholar 

  21. Singh B, Chauhan GS, Bhatt SS (2006) Carbohydr Polym 64:50. doi:https://doi.org/10.1016/j.carbpol.2005.10.022

    Article  CAS  Google Scholar 

  22. Chauhan GS, Singh B, Chauhan S (2005) Desalination 181:217. doi:https://doi.org/10.1016/j.desal.2005.03.002

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank for joint support by the National Natural Science Foundation of China (No. 50572030 and No. 50372022) and the Key Scientific Technology Program of Fujian, China (No. 2005HZ01-4 and No. 2004HZ01-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihuai Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, Q., Wu, J., Lin, J. et al. Two-step synthesis of polyacrylamide/polyacrylate interpenetrating network hydrogels and its swelling/deswelling properties. J Mater Sci 43, 5884–5890 (2008). https://doi.org/10.1007/s10853-008-2857-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2857-x

Keywords

Navigation