Skip to main content
Log in

Creep and creep fracture of commercial aluminium alloys

  • Rees Rawlings Festschrift
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Using standard power law equations, creep rate and creep life measurements at 373–463 K are analysed for a series of aluminium alloys, namely, 2419, 2124, 8090 and 7010. The seemingly complex behaviour patterns are easily rationalized through a modified power law expression, which incorporates the activation energy for lattice diffusion in the alloy matrices (145 kJ mol−1) and the value of the ultimate tensile stress at the creep temperature. By considering the changes in microstructure and creep curve shape as the test duration and temperature increase, all results are then interpreted straightforwardly in terms of the processes shown to govern strain accumulation and damage evolution. Moreover, the data rationalization procedures are also included in new relationships which superimpose the property sets onto sigmoidal ‘master curves’, allowing accurate prediction of the 100,000 h creep-rupture strengths of 2124 by extrapolation of creep lives determined from tests having a maximum duration of only around 1000 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Monkman FC, Grant NJ (1956) Proc ASTM 56:593

    Google Scholar 

  2. Nabarro FRN (2004) Mater Sci Eng A A387:659

    Article  Google Scholar 

  3. Mishra RS, Mukherjee AK, Murty KL (eds) (1999) Creep behaviour of advanced materials for the 21st century. TMS, Warrendale, PA, p 391

  4. Arzt E (1991) Res Mechanica 399:31

    Google Scholar 

  5. Kaufman JG (1999) Properties of aluminium alloys. ASM, Materials Park, OH

    Google Scholar 

  6. Wilshire B, Battenbough AJ (2007) Mater Sci Eng A A443:156

    Article  CAS  Google Scholar 

  7. Burt H, Wilshire B (2004) Metall Mater Trans A 35A:1691

    Article  CAS  Google Scholar 

  8. Burt H, Wilshire B (2005) Metall Mater Trans A 36A:1219

    Article  Google Scholar 

  9. Burt H, Wilshire B (2006) Metall Mater Trans A 37A:1005

    Article  CAS  Google Scholar 

  10. Wilshire B, Burt H, Lavery N (2006) Mater Sci Forum 519–521:1041

    Article  Google Scholar 

  11. Wilshire B, Scharning PJ (2007) Scripta Mater 56:701

    Article  CAS  Google Scholar 

  12. Wilshire B, Scharning PJ (2007) Scripta Mater 56:1023

    Article  CAS  Google Scholar 

  13. Evans RW, Wilshire B (1985) In: Creep of metals and alloys. The Institute of Metals, London

  14. Williams KR, Wilshire B (1973) Metal Sci J 7:176

    Article  CAS  Google Scholar 

  15. Harris JE, Jones RB (1963) J Nucl Mater 10:360

    Article  CAS  Google Scholar 

  16. Burton B, Reynolds GL (1995) Mater Sci Eng A A191:135

    Article  CAS  Google Scholar 

  17. Srivastava V, Williams JP, McNee KR, Greenwood GN, Jones H (2004) Mater Sci Eng A A382:50

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Wilshire.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilshire, B., Scharning, P.J. Creep and creep fracture of commercial aluminium alloys. J Mater Sci 43, 3992–4000 (2008). https://doi.org/10.1007/s10853-007-2433-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-2433-9

Keywords

Navigation