Skip to main content
Log in

Effect of SiCp addition on age-hardening of aluminium composite and closed cell aluminium composite foam

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The age hardening behavior of solid Al-alloy–SiCp composite and closed cell Al-alloy–SiCp composite cellular materials has been examined and compared. The peak aging period of these materials were also compared with that of the solid unreinforced alloy. The effect of SiCp content on the peak aging time has been examined. It was found that the composite aged faster than the alloy irrespective of SiCp content, wherein peak aging time was invariant to SiCp content. On the other hand, while the closed cell composite foam reached a peak aged condition faster than the alloy when SiCp content was less than 10 wt%, further increases in SiCp content delayed the age-hardening kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Smagorinski ME, Tsantrizos PG, Grenier S (1998) Mater Sci Eng A244:86

    CAS  Google Scholar 

  2. Frores FH (1994) Mater Sci Eng A184:119

    Google Scholar 

  3. Lloyd DJ (1994) Int Mater Rev 39:1

    CAS  Google Scholar 

  4. Kim BG, Dong SL, Park SD (2001) Mater Chem Phys 72:42

    Article  CAS  Google Scholar 

  5. Gui M, Kang SB (2000) Mater Lett 46:296

    Article  CAS  Google Scholar 

  6. Venkataraman B, Sundararajan G (2000) Wear 245(1–2):22

    Article  CAS  Google Scholar 

  7. Iwai Y, Honda T, Miyajima T, Iwasaki Y, Surappa MK, Xu JF (2000) Compos Sci Technol 60:1781

    Article  CAS  Google Scholar 

  8. Mondal DP, Das S, Rao RN, Singh M (2005) Mater Sci Eng A402:307

    CAS  Google Scholar 

  9. Watson G, Forster MF, Lee PD, Daswood RJ, Hamilton RW, Chirazi A (2005) Composites Part A 36:1177

    Article  CAS  Google Scholar 

  10. Evans RD, Boyd JD (2003) Scripta Mater 49:59

    Article  CAS  Google Scholar 

  11. Ferry M, Mounroe PR (2003) Mater Sci Eng A358:142

    CAS  Google Scholar 

  12. Calhoun RB, Dunand DC (2000) In: Kelley A, Zweben C (eds) Comprehensive Composite Materials. Vol. 3, Metal Matrix Composites (Vol. ed. Cline TW), Elsevier, pp.27–59

  13. Mondal DP, Basu K, Narayan SP (2000) J Mater Sci Lett 19:1189

    Article  CAS  Google Scholar 

  14. Dutta I, Bourell DL (1990) Acta Metall Mater 38:2041

    Article  CAS  Google Scholar 

  15. Srivatson TS, Al-Hairi M, Smith C, Petrardi M (2003) Mater Sci Eng A346:91

    Google Scholar 

  16. Feng AH, Geng L, Zhang J, Yao CD (2003) Mater Chem Phys 82:618

    Article  CAS  Google Scholar 

  17. Martin E, Forn A, Nogue R (2003) J Mater Proc Technol 143–144:1

    Article  CAS  Google Scholar 

  18. Chan KC, Tong GQ (2001) Mater Lett 51:139

    Article  Google Scholar 

  19. Wang GS, Geng L, Zheng ZZ, Wang DZ, Yao CK (2001) Mater Chem Phys 70:164

    Article  CAS  Google Scholar 

  20. Han BQ, Chan KC, Tue TM, Lau WS (1997) J Mater Proc Technol 63:395

    Article  Google Scholar 

  21. Yadav S, Chichili DR, Ramesh KT (1995) Acta Metall Mater 43:4453

    Article  CAS  Google Scholar 

  22. Guden M, Hall IW (2000) Compos Struct 76:139

    Article  Google Scholar 

  23. Chowla KK, Esmacili AH, Datya AK, Vasudevan AK (1991) Scripta Metall Mater 25:1359

    Google Scholar 

  24. Dutta I, Allen SM, Hafley JL (1991) Metall Trans 22A:2553

    CAS  Google Scholar 

  25. Chin JY, Harald HE, Joachim B (1998) Adv Mater Proc 11:45

    Google Scholar 

  26. Hall IW, Guden M, Yu CJ (2000) Scripta Mater 43:51

    Google Scholar 

  27. Tedesco JW, Ross CA, Kufnnen ST (1993) J Sound Vibr 165:376

    Article  Google Scholar 

  28. Kathryn AD, James LJ (2000) Mater Sci Eng A293:157

    Google Scholar 

  29. Ashby MF, Evans AG, Fleck NA, Gibson LJ, Hutchinson JW, Wadley HNG (2000) Metal foams—a design guide. Buterworth-Heinemann, Boston

    Google Scholar 

  30. Ip SW, Wang Y, Toguri JM (1999) Can Met Quart 38(1):81

    Article  CAS  Google Scholar 

  31. Tang F, Xiao Z, Tang J, Jiang L (1989) J Colloid Interface Sci 131:498

    Article  CAS  Google Scholar 

  32. Deqing W, Ziyuan S (2003) Mater Sci Eng A361:45

    Google Scholar 

  33. Lehmhus D, Banhart J (2003) Mater Sci Eng A349:98

    CAS  Google Scholar 

  34. Banhart J, Baumeister J (1998) J Mater Sci 33:1431

    Article  CAS  Google Scholar 

  35. Han F, Zhu Z, Gao J (1998) Metall Mater Trans 29A:2497

    Article  CAS  Google Scholar 

  36. Simancik F, Jerz J, Kovacik J, Minar P (1997) Kovove Mater 35:265

    CAS  Google Scholar 

  37. Ledbetter HM, Austin MW (1987) Mater Sci Eng A89:61

    Google Scholar 

  38. Notin M, Gachon JC, Hertz J (1982) J Chem Thermodyn 14(5):425

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. P. Mondal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajput, V., Mondal, D.P., Das, S. et al. Effect of SiCp addition on age-hardening of aluminium composite and closed cell aluminium composite foam. J Mater Sci 42, 7408–7414 (2007). https://doi.org/10.1007/s10853-007-1837-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-1837-x

Keywords

Navigation