Skip to main content
Log in

Creep behavior of INCOLOY alloy 617

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The microstructural features of INCOLOY alloy 617 in the solution annealed condition and after long-term creep tests at 700 and 800 °C were characterized and correlated with hardness and creep strength. Major precipitates included (Cr,Mo,Fe)23C6 carbides and the δ-Ni3Mo phase. M6C and MC carbides were also detected within the austenitic grains. However, minor precipitates particularly γ′-Ni3(Al,Ti) was found to play an important role. At different exposure temperatures, the microstructural features of the Ni–22Cr–12Co–9Mo alloy changed compared with the as-received condition. The presence of discontinuously precipitated (Cr,Mo,Fe)23C6 carbides and their coarsening until the formation of an intergranular film morphology could be responsible both for a reduction in rupture strength and for enhanced intergranular embrittlement. The fraction and morphology of the γ′-phase, precipitated during exposure to high temperature, also changed after 700 or 800 °C exposure. At the latter test temperature, a lower volume fraction of coarsened and more cubic γ′ precipitates were observed. These microstructural modifications, together with the presence of the δ-phase, detected only in specimens exposed to 700 °C, were clearly responsible for the substantially good creep response observed at 700 °C, compared with that found at 800 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Blum R, Vanstone RW (2005) ParsonS 2003, 1st Int. Conf. super-high strength steels, 2–4 Nov. 2005, Rome

  2. Viswanathan R, Hanry JF, Tanzosh J, Stanko G, Schlingledecker J (2005) In: Shibli IA, Holdsworth SR, Merckling G (eds) Proc Conf. creep & fracture at high temperature components, 12–14 Sept. 2005, DEStech Publications, Lancaster, PA, p 59

  3. Röster J, Götting M, Del Genovese D, Böttiger B, Kopp P, Wolske M, Shubert F, Pemkolla HJ, Seliga T, Thoma A, Sholz A, Berger C (2005) Adv Eng Mat 5:469

    Google Scholar 

  4. Donachie MJ, Donachie SJ (2002) Superalloys—a technical guide, 2nd edn. ASM International, Materials Park, OH, p 1

  5. Martin U, Oetttel H, Mühle U, Jerenz M (2001) Adv Eng Mat 3:871

    Article  CAS  Google Scholar 

  6. Cozar R, Pineau A (1973) Metall Mater Trans A4:47

    Google Scholar 

  7. Kegg CR, Silcock JM (1972) Scripta Metall 6:1083

    Article  CAS  Google Scholar 

  8. Lewis MH, Hatterrsley B (1965) Acta Metall 13:1159

    Article  CAS  Google Scholar 

  9. Loomis WT, Freeman JW, Sponseller DL (1964) Metall Mater Trans A67:714

    Google Scholar 

  10. Jones RD, Kapoor S (1973) J Iron Steel Inst 211:226

    CAS  Google Scholar 

  11. Peters DT (1967) Trans TMS-AIME 239:1981

    CAS  Google Scholar 

  12. Allen D, Keustermans JP, Grijbels S, Bicego V (2004) Mater High Temp 21:53

    Google Scholar 

  13. Mankins WL, Hoster JC, Bassford TH (1974) Metall Trans 5:2593

    Article  Google Scholar 

  14. Rao GA, Prasad KS, Kumar M, Srinivas M, Sarma DS (2003) J Mater Sci Technol 19:1

    Article  Google Scholar 

  15. Rao GA, Kumar M, Srinivas M, Sarma DS (2003) Mater Sci Eng A355:114

    CAS  Google Scholar 

  16. Lewis MH, Hattersley B (1965) Acta Metall 13:1159

    Article  CAS  Google Scholar 

  17. Garzarotli F, Gerscha A, Francke FP (1969) Z Metallkunde 60:643

    Google Scholar 

  18. Sundararaman M, Mukhopadhyaya P, Benerjee S (1988) Mater Sci Forum 3:453

    Google Scholar 

  19. Shankar V, Shankara Rao KB, Mannan SL (2001) J Nucl Mater 288:222

    Article  CAS  Google Scholar 

  20. Sun WR, Guo SR, Lee JH, Park NK, Yoo YS, Choe SJ, Hu ZQ (1998) Mater Sci Eng A247:173

    CAS  Google Scholar 

  21. Ferreire I, Stang RG (1983) Acta Metall 31:585

    Article  Google Scholar 

  22. Merrick HF (1995) Metall Mater Trans A7:505

    Google Scholar 

  23. Valencia JJ, Spirko J, Schmees R (1997) In: Loria EA (ed) Superalloys 718, 625, 706 and various derivatives. TMS, Warredale, PA, p 753

  24. Stoloff NS (1989) Int Mater Rev 34:153

    CAS  Google Scholar 

  25. Marquez C, Esparane GL, Koul AK (1989) Int J Powder Met 25:301

    CAS  Google Scholar 

  26. Maziasz PJ (1989) J Nucl Mater 169:95

    Article  CAS  Google Scholar 

  27. Williams TM, Titchmarsh JM (1979) J Nucl Mater, 82:199

    Article  CAS  Google Scholar 

  28. Williams TM, Titchmarsh JM (1981) J Nucl Mater 98:223

    Article  CAS  Google Scholar 

  29. Chen W, Chaturvedi M (1993) Can Metall Quart 32(4):363

    CAS  Google Scholar 

  30. Campo E, Turco C, Catena V (1985) Metall Sci Tech, J. TEKSID, Italy, 3(1):16

    Google Scholar 

  31. Collins HE (1975) Metall Mater Trans 5:187

    Google Scholar 

  32. Kimball OF, Lai GY, Reynolds GH (1976) Metall Trans A 7:1951

    Google Scholar 

  33. Qiu YY (1996) J All Comp 232:254

    Article  CAS  Google Scholar 

  34. Chen W, Chaturvedi M (1994) Mater Sci Eng A183:81

    Google Scholar 

  35. Xue H, Lijun W, Hui X, Runguang L, Shaogang W, Zhonglin C (2003) J Mater Proc Techn 137:17

    Article  Google Scholar 

  36. Betteridge W, Franklin AW (1957) J Inst Met 85:473

    CAS  Google Scholar 

  37. Devine TM (1990) Corrosion Sci 30:135

    Article  CAS  Google Scholar 

  38. Mathew MD, Sasikala G, Bhanu Sankara Rao K, Mannan SL (1991) Mater Sci Eng A148:253

    CAS  Google Scholar 

  39. Iacoviello F, Casari F, Gialanella F (2005) Corros Sci 47:909

    Article  CAS  Google Scholar 

  40. Park C-J, Ahn M-K, Kwon H-S (2006) Mater Sci Eng A418:211

    CAS  Google Scholar 

  41. Dahotre NB, McCay MH, McCay TD, Hubbard CR, Porter WD, Cavin OB (1993) Scripta Metall Mater 28:1359

    Article  CAS  Google Scholar 

  42. Evans ND, Maziasz PJ, Swindeman RW, Smith GD (2004) Scripta Mater 51:503

    Article  CAS  Google Scholar 

  43. Zhao S, Xie X, Smith GD, Patel SJ (2003) Mater Sci Eng A355:96

    CAS  Google Scholar 

  44. Kindrachuk V, Wanderka N, Banhart J (2006) Mater Sci Eng A417:82

    CAS  Google Scholar 

  45. Murakumo T, Kobayashi T, Koizumi Y, Harada H (2004) Acta Mater 52:3737

    Article  CAS  Google Scholar 

  46. Shubert F, Bruch U, Cook R, Diehl H, Ennis PJ, Jakobeit W, Penkalla E, Ullrich G (1984) Nucl Technol 66:227

    Google Scholar 

  47. Rai SK, Kumar A, Shankar V, Jayakurmar T, Rao KBS, Raj B (2004) Scripta Mater 51:59

    Article  CAS  Google Scholar 

  48. Yuan H, Liu WC (2005) Mater Sci Eng A408:281

    CAS  Google Scholar 

  49. Liu L, Zhai C, Lu C, Ding W, Hirose A, Kobayashi KF (2005) Corros Sci 47:255

    Google Scholar 

  50. Azadian S, Wei L-Y, Warren R (2004) Mater Charact 53:7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the other Italian creep laboratories, which contributed to the experimental creep test program (CESI (Piacenza, Milan), ISB (Milan) and CSM (Rome)). Thanks are also due to all the members of the WG3C of ECCC for their support and stimulating discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcello Cabibbo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cabibbo, M., Gariboldi, E., Spigarelli, S. et al. Creep behavior of INCOLOY alloy 617. J Mater Sci 43, 2912–2921 (2008). https://doi.org/10.1007/s10853-007-1803-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-1803-7

Keywords

Navigation