Skip to main content

Advertisement

Log in

Erosion of geopolymers made from industrial waste

  • Advances in Geopolymer Science & Technology
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Solid-particle erosion studies were conducted on geopolymers derived from various combinations of granulated blast-furnace slag, flyash, sand, clay, and rock. The erodent particles were 390-μm angular Al2O3, which impacted at 30, 60, or 90° at a velocity of 50, 70, or 100 m/s. Steady-state erosion rates were obtained as weight of target lost per weight of impacting particles. Material-loss mechanisms were studied by scanning electron microscopy (SEM). All of the geopolymers responded to normal impact as conventional brittle solids, but impact at 30° led to anomalously rapid erosion, probably because of presence of microcracks and consequent enhanced removal of aggregates within the geopolymers. Erosion rates at 90° impact were proportional to erodent velocity to the 2.3–2.7 power. The geopolymers exhibited crushing strengths of approximately 32–57 MPa. Erosion rate correlated with density and strength for geopolymers of similar composition. All of the geopolymers that contained flyash were more resistant to erosion than was the geopolymer without flyash.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Davidovits J, Proceedings of PACTEC ’79, Society of plastic engineers, Brookfield, CT, 1979, p 151

  2. Davidovits J (1991) J Therm Anal 37:1633

    Article  CAS  Google Scholar 

  3. Davidovits J, In: Krivenko PV (ed) Proceedings of the 1st international conference on alkaline cements and concretes, VIPOL Stock Co., Ukraine, 1994, p 131

  4. Gordon M, Bell J, Kriven WM (2005) Ceram Trans 165:95

    CAS  Google Scholar 

  5. Campbell KM, EL-Korchi T, Gress D, Bishop P (1987) Environ Prog 6:99

    Article  CAS  Google Scholar 

  6. Van Jaarsveld JGS, Van Deventer JSJ, Lorenzen L (1998) Metall Mater Trans B 29:283

    Article  Google Scholar 

  7. Xu H, Van Deventer JSJ (2000) Int J Miner Proc 59:247

    Article  CAS  Google Scholar 

  8. Phair JW, Van Deventer JSJ, Smith JD (2000) Ind Eng Chem Res 39:2925

    Article  CAS  Google Scholar 

  9. Van Jaarsveld JGS, Van Deventer JSJ, Schwartzmann A (1999) Miner Eng 12:75

    Article  Google Scholar 

  10. Xu H, Van Deventer JSJ, Lukey GC (2001) Ind Eng Chem Res 40:3749

    Article  CAS  Google Scholar 

  11. Van Jaarsveld JGS, Van Deventer JSJ, Lukey GC (2002) Chem Eng J 89:63

    Article  Google Scholar 

  12. Yip CK, Lukey GC, Van Deventer JSJ (2003) Ceram Trans 153:187

    CAS  Google Scholar 

  13. Duxson P, Lukey GC, Van Deventer JSJ, Mallicoat SW, Kriven WM (2005) Ceram Trans 165:95

    Google Scholar 

  14. Fwa TF, Low EW (1990) Cem Concrete Aggreg 12:101

    Article  CAS  Google Scholar 

  15. Momber A, Kovacevic R (1994) Wear 177:55

    Article  Google Scholar 

  16. Singh D, Wagh AS, Cunnane J Mayberry J (1997) Environ Sci Health, A32:527

    CAS  Google Scholar 

  17. Wagh AS, Strain R, Jeong SY, Reed D, Krause T, Singh D (1999) J Nucl Mater 265:265

    Article  Google Scholar 

  18. Lyon RE, Balaguru PN, Foden A, Sorathia U, Davidovits J, Davidovics M (1998) Fire Mater 21:67

    Article  Google Scholar 

  19. Fletcher RA, Mackenzie KJD, Nicholson CL, Shimade S (2005) J Euro Ceram Soc 25:1471

    Article  CAS  Google Scholar 

  20. Goretta KC, Burdt ML, Cuber MM, Perry LA, Singh D, Wagh AS, Routbort JL (1999) Wear 224:106

    Article  CAS  Google Scholar 

  21. Goretta KC, Singh D, Tlustochowicz M, Cuber MM, Burdt ML, Jeong SY, Smith TL, Wagh AS, Routbort JL (1999) Mater Res Soc Symp Proc 556:1253

    CAS  Google Scholar 

  22. Goretta KC, Chen N, Routbort JL, Lukey GC, Van Deventer JSJ, Van Jaarsveld JGS, Lloyd RR, Geopolymers 2002—CD Proceedings In: Lukey GC (ed) Siloxo, Melbourne, 2003

  23. Goretta KC, Chen N, Gutierrez-Mora F, Routbort JL, Lukey GC, Van Deventer JSJ (2004) Wear 256:714

    Article  CAS  Google Scholar 

  24. Australian Standard AS 1012.9, Methods for testing concrete (1986)

  25. Routbort JL, Scattergood RO (1992) Key Eng Mater 71:23

    Article  CAS  Google Scholar 

  26. Hos JP, McCormick PG, Byrne LT (2002) J Mater Sci 37:2311

    Article  CAS  Google Scholar 

  27. Wang JW, Cheng TW, Proceedings of the 7th International Symposium on East Asian Resources Recycling Technology, In: Tsai M-S (ed) Tainan, Taiwan, 2003, http://www.ntut.edu.tw/∼twcheng/S4R104.pdf, as on 12 July 2005

  28. Evans AG, Gulden ME, Rosenblatt M (1978) Proc R Soc London Ser A 361:343

    CAS  Google Scholar 

  29. Wiederhorn SM, Lawn BR (1979) J Am Ceram Soc 62:66

    Article  CAS  Google Scholar 

  30. Wiederhorn SM, Hockey BJ (1980) J Mater Sci 18:766

    Article  Google Scholar 

  31. Ritter JE, Strzepa P, Jakus K, Rosenfeld L, Buckman KJ (1984) J Am Ceram Soc 67:769

    Article  CAS  Google Scholar 

  32. Lawn BR, Evans AG, Marshall DB (1980) J Am Ceram Soc 63:574

    Article  CAS  Google Scholar 

  33. Marshall DB, Lawn BR, Evans AG (1982) J Am Ceram Soc 65:561

    Article  CAS  Google Scholar 

  34. Routbort JL, Scattergood RO, Kay EW (1980) J Am Ceram Soc 63:635

    Article  CAS  Google Scholar 

  35. Srinivasan S, Scattergood RO (1987) J Mater Sci 22:3463

    Article  CAS  Google Scholar 

  36. Martínez-Fernández J., De Arellano-López AR, Varela-Feria FM, Orlova TS, Goretta KC, Gutierrez-Mora F, Chen N, Routbort JL (2003) J Euro Ceram Soc 24:861

    Google Scholar 

  37. Goretta KC, Gutierrez-Mora F, Chen N, Routbort JL, Orlova TS, Smirnov BI, De Arellano-López AR (2003) Wear 256:233

    Article  CAS  Google Scholar 

  38. Anand K, Morrison C, Scattergood RO, Conrad H, Routbort JL, Warren R (1986) Inst Phys Ser No 75:949

    CAS  Google Scholar 

  39. Hovis SK, Talia JE, Scattergood RO (1986) Wear 108:139

    Article  CAS  Google Scholar 

  40. PINET P, The Planet Oceanus, http://www.marine.usm.edu/mar151/MAR_151_Chap_2.html, as on 20 July 2005

  41. Hammell J, Balaguru P, Lyon R (1998) SAMPE Proc 43:1600

    CAS  Google Scholar 

  42. Papakonstantinou CG, Balaguru P, Lyon RE (2001) Comp Part B 32:637

    Article  Google Scholar 

  43. Duxson P, Provis JL, Lukey GC, Mallicoat SW, Kriven WM, Van Deventer JSJ (2007) Coll Surf A 292:8

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work at Argonne National Laboratory was supported by the U.S. Department of Energy, under Contract W-31–109-Eng-38. The work at The University of Melbourne was partially supported by a contract from the Asian Office of Aerospace Research and Development. We thank Dr. Robert Erck for assistance with some of the photographs and Dr. Nan Chen for assistance with some of the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Routbort.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goretta, K.C., Gutierrez-Mora, F., Singh, D. et al. Erosion of geopolymers made from industrial waste. J Mater Sci 42, 3066–3072 (2007). https://doi.org/10.1007/s10853-006-0561-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0561-2

Keywords

Navigation