Skip to main content
Log in

Cyclic indentation in aluminum

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Cyclic indentation was used to evaluate the dynamic deformation of aluminum. Under the load-controlled cyclic indentation, the indenter continuously penetrated into the material and reached a steady state at which the penetration speed (per cycle) was a constant. The amplitude of the cyclic indentation depth was basically controlled by the amplitude of the cyclic indentation load, independent of the mean indentation load and the indentation frequency. The steady state penetration speed decreased with increasing the amplitude of the cyclic indentation load due to the increase in the size of plastic zone. It also decreased with the increase in the mean indentation load due to local strain hardening, while it increased with the increase of the indentation frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Klesnil M, Lukas P (1980) Fatigue of metallic materials. Amsterdam, The Netherlands7 Elsevier Science

  2. Sarfarazi M, Ghosh K (1987) Eng Fract Mech 27:257

    Article  Google Scholar 

  3. Samuels LE (1986) In: Blau PJ, Lawn BR (eds) Microindentation techniques in materials science and engineering, ASTM STP 889. Am. Soc. Testing and Mater., Philadelphia, pp 5–25

  4. Yang FQ, Jiang CB, Du WW, Zhang ZQ, Li SX, Mao SX (2005) Nanotechnology 16:1073

    Article  CAS  Google Scholar 

  5. Vaughan DAJ, Guiu F (1887) Brit Ceram Proc 39:101

    Google Scholar 

  6. Reece M, Guiu F (1991) J Am Ceram Soc 74:148

    Article  CAS  Google Scholar 

  7. Takakura E, Horibe S (1992) J Mater Sci 27:6151

    Article  CAS  Google Scholar 

  8. Guillou M-O, Henshall JL, Hooper RM (1993) J Am Ceram Soc 76:1832

    Article  CAS  Google Scholar 

  9. Henshall JL, Guillou M-O, Hooper RM (1996) Fatigue Fract Eng Mater Struct 19:903

    Article  CAS  Google Scholar 

  10. Guiberteau F, Padture NP, Cai H, Lawn BR (1993) Phil Mag A 68:1003

    Article  CAS  Google Scholar 

  11. Cai H, Kalceff MAS, Hooks BM, Lawn BR, Chyung K (1994) J Mater Res 9:2654

    Article  CAS  Google Scholar 

  12. Padture NP, Lawn BR (1995) J Am Ceram Soc 78:1431

    Article  CAS  Google Scholar 

  13. Kim DK, Jung Y-G, Peterson 1M, Lawn BR (1999) Acta Mater 42:4711

    Article  Google Scholar 

  14. Ann L (1999) J Am Ceram Soc 82:178

    Article  Google Scholar 

  15. Li JCM, Chu SNG (1979) Scripta Metall 13:1021

    Article  CAS  Google Scholar 

  16. Chu SNG, Li JCM (1980) J Eng Mater Tech Trans ASME 102:337

    Article  CAS  Google Scholar 

  17. Loubet JL, Georges JM, Meille G (1986) In: Blau PJ, Lawn BR (eds) Vickers indentation curves of elastoplastic materials, ASTM STP 889. Am. Soc. Testing and Mater., Philadelphia, pp 72–89

  18. Sneddon IN (1992) Quart J Mech Appl Math 45:607

    Article  Google Scholar 

  19. Suresh S (1998) Fatigue of materials, 2nd edn. Cambridge University Press

  20. Cheng YT, Cheng CM (2004) Mater Sci Eng R44:91

    Article  Google Scholar 

  21. Yang FQ, Peng LL, Okazaki K (2004) Metal Mater Trans A 35:3323

    Article  Google Scholar 

  22. Hill R (1950) The mathematical theory of plasticity. Clarendon Press, Oxford

    Google Scholar 

  23. Johnson KL (1970) J Mech Phys Solids 18:115

    Article  Google Scholar 

  24. Yang FQ, Peng LL, Okazaki K (2004) J Mater Res 19:1243

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is supported by NSF through a grant CMS-0508989 and Kentucky Science and Engineering Foundation through a grant KSEF-148-502-03-73.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuqian Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, F., Peng, L. & Okazaki, K. Cyclic indentation in aluminum. J Mater Sci 42, 4513–4520 (2007). https://doi.org/10.1007/s10853-006-0480-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0480-2

Keywords

Navigation