Skip to main content
Log in

Composite polymer derived ceramic system for oxidizing environments

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Preceramic polymers and expansion agents are being investigated to produce composite ceramic coatings for oxidation protection of metallic substrates. In this paper, we present results of a systematic approach to selecting the preceramic polymer and expansion agents and the optimization of the processing parameters to produce composite ceramics. Six commercially available poly(silsesquioxane) polymers and a polysiloxane were studied. In addition, several metals and an intermetallic were considered as potential expansion agents. Based on this study, the most desirable polymer/expansion agent combination and optimal processing parameters have been identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rice RW (1983) Cer Bull 62(8):889

    CAS  Google Scholar 

  2. Wynne KJ, Rice RW (1984) Ann Rev Mater Sci 14:297

    Article  CAS  Google Scholar 

  3. Greil P (1995) J Am Cer Soc 78(4):835

    Article  CAS  Google Scholar 

  4. Riedel R, Dressler W (1996) Cer Int 22:233

    Article  CAS  Google Scholar 

  5. Stackpoole M (2002) In: Ph.D. Thesis, Department of Materials Science and Engineering, University of Washington

  6. Suzuki T, Inoue K, Koshi I, Isoda T (1991) In: Proceedings of the 2nd International SAMPE Symposium, December 2001, 11–14, p 216

  7. Raj R, Riedel R, Soraru GD (2001) J Am Cer Soc 84(10):2158

    Article  Google Scholar 

  8. Bill J, Heiman D (1996) J Eur Cer Soc 16:1115

    Article  CAS  Google Scholar 

  9. Colombo P, Bernardo E (2003) Compos Sci Technol 63:2353

    Article  CAS  Google Scholar 

  10. Zeschky J, Goetz-Neunhoeffer F, Neubauer J, Lo SH, Kummer B, Scheffler M, Greil P (2003) Compos Sci Technol 63:2361

    Article  CAS  Google Scholar 

  11. Zeschky J, Lo SH, Scheffler M, Hoeppel H, Arnold M, Greil P (2002) Mater Res Adv Tech 93(8):812

    CAS  Google Scholar 

  12. Scheffler M, Greil P, Berger A, Pippel E, Woltersdorf J (2004) Mater Chem Phys 84:131

    Article  CAS  Google Scholar 

  13. Liew L, Zhang W, An L, Shah S, Luo R, Lui Y, Cross T, Dunn ML, Bright V, Raj R (2001) Am Cer Soc Bull 80(5):25

    CAS  Google Scholar 

  14. Liew L, Zhang W, Bright VM, An L, Dunn ML, Raj R (2001) Sensors Actuat A 89:64

    Article  CAS  Google Scholar 

  15. Liew L, Liu Y, Luo R, Cross T, An L, Bright V, Dunn M, Daily J, Raj R (2002) Sensors Actuat A 95:120

    Article  CAS  Google Scholar 

  16. Liew L, Saravanan RA, Bright VM, Dunn ML, Daily JW, Raj R (2003) Sensors Actuat A 103:171

    Article  CAS  Google Scholar 

  17. Soraru GD, Kleebe H, Ceccato R, Pederiva L (2000) J Eur Cer Soc 20:2509

    Article  CAS  Google Scholar 

  18. Michalet T, Parlier M, Beclin F, Duclos R, Crampon J (2002) J Eur Cer Soc 22:143

    Article  CAS  Google Scholar 

  19. Greil P (1998) J Eur Cer Soc 18:1905

    Article  CAS  Google Scholar 

  20. Lewinsohn CA, Jones RH, Colombo P, Riccardi B (2002) J Nucl Mater 307–311:1232

    Article  Google Scholar 

  21. Baney RH (1999) Poly (phenylsilsesquioxane), In: Polymer data handbook, edited by Mark JE, Oxford University Press, p 734

  22. Erny T, Siebold M, Jarchow O, Greil P (1993) J Am Cer Soc 76(1):207

    Article  CAS  Google Scholar 

  23. Blum YD, MacQueen DB (2001) Surf Coat Int Part B: Coat Trans 84(1–90):27

    Article  CAS  Google Scholar 

  24. Blum YD (1992) Hydroxysiloxane precursors for ceramic manufacture. US Patent 5,128,494, July 7, 1992

  25. Blum YD, Johnson SM, Gusman MI (1997) Hydridosiloxanes as precursors to ceramic products, US Patent 5,635,250, June 3, 1997

  26. Schwartz SM, Henager CH, Gianuzzi LA (2004) Presented at the 28th International Cocoa Beach Conference & Exposition on Advanced Ceramics and Composites, Cocoa Beach, FL, January 2004

Download references

Acknowledgements

The authors would like to thank the DOE Industrial Technologies Program for financial support (Project No. 25630-A-N4). Special thanks also go to Dr. Yigal Blum (SRI, Inc.), Dr. Eric Minford (Air Products), and Dr. Michael Scheffler (University of Washington, Bavarian Center for Applied Energy Research) for their helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajendra K. Bordia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torrey, J.D., Bordia, R.K., Henager, C.H. et al. Composite polymer derived ceramic system for oxidizing environments. J Mater Sci 41, 4617–4622 (2006). https://doi.org/10.1007/s10853-006-0242-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0242-1

Keywords

Navigation