Skip to main content
Log in

Monotonic Sampling of a Continuous Closed Curve with Respect to Its Gauss Digitization: Application to Length Estimation

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

In many applications of geometric processing, the border of a continuous shape and of its digitization (i.e., its pixelated representation) should be matched. Assuming that the continuous-shape boundary is locally turn bounded, we prove that there exists a mapping between the boundary of the digitization and the one of the continuous shape such that these boundaries are traveled together in a cyclic order manner. Then, we use this mapping to prove the multigrid convergence of perimeter estimators that are based on polygons inscribed in the digitization. Furthermore, convergence speed is given for this class of estimators. If, moreover, the continuous curves also have a Lipschitz turn, an explicit error bound is calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. Other hypotheses can be chosen for curves that are graphs of a function: the function or its derivatives can be required to be Lipschitz (see [24]).

  2. About these properties, the reader can find in [21] some comments and more precise references.

References

  1. Alexandrov, A.D., Reshetnyak, Y.G.: General Theory of Irregular Curves. Kluwer Academic Pulishers, New York (1989)

    Book  Google Scholar 

  2. Asano, T., Kawamura, Y., Klette, R., Obokata, K.: Minimum-length polygons in approximation sausages. In: Arcelli, C., Cordella, L.P., Baja, G.S. (eds.) Visual Form 2001. Lecture Notes in Computer Science, vol. 2059, pp. 103–112. Springer, Berlin Heidelberg (2001). https://doi.org/10.1007/3-540-45129-3_8

    Chapter  Google Scholar 

  3. Chazal, F., Cohen-Steiner, D., Lieutier, A.: A sampling theory for compact sets in Euclidean space. Discr. Comput. Geom. 41(3), 461–479 (2009). https://doi.org/10.1007/s00454-009-9144-8

    Article  MATH  Google Scholar 

  4. Cœurjolly, D., Klette, R.: A comparative evaluation of length estimators of digital curves. IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 252–257 (2004)

    Article  Google Scholar 

  5. Coeurjolly, D., Lachaud, J.O., Levallois, J.: Integral based curvature estimators in digital geometry. In: B.M. R. Gonzalez-Diaz M.J. Jimenez (ed.) 17th International Conference on Discrete Geometry for Computer Imagery (DGCI 2013), Lecture Notes in Computer Science, pp. 215–227. Springer Verlag (2013). http://liris.cnrs.fr/publis/?id=5866

  6. Coeurjolly, D., Lachaud, J.O., Roussillon, T.: Multigrid convergence of discrete geometric estimators. In: V. Brimkov, R. Barneva (eds.) Digital Geometry Algorithms, Theoretical Foundations and Applications of Computational Imaging, Lecture Notes in Computational Vision and Biomechanics, vol. 2, pp. 395–424. Springer-Verlag (2012)

  7. Daurat, A., Tajine, M., Zouaoui, M.: Les estimateurs semi-locaux de périmètre. Tech. rep. (2011). https://hal.archives-ouvertes.fr/hal-00576881

  8. de Vieilleville, F., Lachaud, J.O.: Experimental comparison of continuous and discrete tangent estimators along digital curves. In: Brimkov, V.E., Barneva, R.P., Hauptman, H.A. (eds.) Combinatorial Image Analysis, pp. 26–37. Springer, Berlin Heidelberg, Berlin, Heidelberg (2008)

    Chapter  Google Scholar 

  9. de Vieilleville, F., Lachaud, J.O., Feschet, F.: Maximal digital straight segments and convergence of discrete geometric estimators. In: Kalviainen, H., Parkkinen, J., Kaarna, A. (eds.) Image Analysis, pp. 988–997. Springer, Berlin Heidelberg, Berlin, Heidelberg (2005)

    Chapter  Google Scholar 

  10. de Vieilleville, F., Lachaud, J.O., Feschet, F.: Maximal digital straight segments and convergence of discrete geometric estimators. J. Math. Image Vis. 27(2), 471–502 (2007)

    MATH  Google Scholar 

  11. Federer, H.: Curvature measures. Transactions of the American Mathematical Society 93(3), 418–491 (1959). http://www.jstor.org/stable/1993504

  12. Klette, R., Rosenfeld, A.: Geometric Methods for Digital Picture Analysis. Elsevier, Amsterdam (2004)

    MATH  Google Scholar 

  13. Klette, R., Žunić, J.: Multigrid convergence of calculated features in image analysis. J. Math. Imag. Vis. 13(3), 173–191 (2000)

    Article  MathSciNet  Google Scholar 

  14. Klette, R., Yang, N.: Measurements of arc length’s by shortest polygonal jordan curves. http://citr.auckland.ac.nz/techreports/1998/CITR-TR-26.pdf (1998)

  15. Klette, R., Yip, B.: Evaluation of curve length measurements. Proc. 1st Int. Conf. Pattern Recogn. 1, 1610 (2000)

  16. Lachaud, J., Thibert, B.: Properties of gauss digitized shapes and digital surface integration. J. Math. Imaging Vis. 54(2), 162–180 (2016). https://doi.org/10.1007/s10851-015-0595-7

    Article  MathSciNet  MATH  Google Scholar 

  17. Lachaud, J.O.: Espaces non-euclidiens et analyse d’image : modèles déformables riemanniens et discrets, topologie et géométrie discrète. Université Sciences et Technologies, Bordeaux I, Habilitation à diriger des recherches en informatique (2006)

  18. Latecki, L., Eckhardt, U., Rosenfeld, A.: Well-composed sets. Comput. Vis. Image Understand. 61(1), 70–83 (1995). https://doi.org/10.1006/cviu.1995.1006

    Article  Google Scholar 

  19. Latecki, L.J., Conrad, C., Gross, A.: Preserving topology by a digitization process. J. Math. Imaging Vis. 8, 131–159 (1998)

    Article  MathSciNet  Google Scholar 

  20. Le Quentrec, É., Mazo, L., Baudrier, É., Tajine, M.: Local turn-boundedness: A curvature control for a good digitization. In: Couprie, M., Cousty, J., Kenmochi, Y., Mustafa, N. (eds.) Discrete Geometry for Computer Imagery, pp. 51–61. Springer International Publishing, Cham (2019)

    Chapter  Google Scholar 

  21. Le Quentrec, E., Mazo, L., Baudrier, E., Tajine, M.: Local turn-boundedness, a curvature control for continuous curves with application to digitization. J. Math. Imaging Vis. 62, 673–692 (2020). https://doi.org/10.1007/s10851-020-00952-x. http://icube-publis.unistra.fr/2-LMBT20

  22. Le Quentrec, E., Mazo, L., Baudrier, É., Tajine, M.: LTB curves with Lipschitz turn are par-regular. Research Report, Laboratoire ICube, université de Strasbourg (2021). https://hal.archives-ouvertes.fr/hal-03480735v1

  23. Mazo, L., Baudrier, É.: Non-local estimators: a new class of multigrid convergent length estimators. Theor. Comput. Sci. 645, 128–146 (2016). https://doi.org/10.1016/j.tcs.2016.07.007. http://icube-publis.unistra.fr/2-MB16

  24. Mazo, L., Baudrier, E.: Non-local length estimators and concave functions. Theor. Comput. Sci. 690, 73–90 (2017). https://doi.org/10.1016/j.tcs.2017.06.005. http://icube-publis.unistra.fr/2-MB17

  25. Meine, H., Köthe, U., Stelldinger, P.: A topological sampling theorem for robust boundary reconstruction and image segmentation. Discr. Appl. Math. 157(3), 524–541 (2009). https://doi.org/10.1016/j.dam.2008.05.031. http://www.sciencedirect.com/science/article/pii/S0166218X08002643. International Conference on Discrete Geometry for Computer Imagery

  26. Milnor, J.W.: On the total curvature of knots. Ann. Math. Second Ser. 52, 248–257 (1950)

    Article  MathSciNet  Google Scholar 

  27. Ngo, P., Passat, N., Kenmochi, Y., Debled-Rennesson, I.: Geometric preservation of 2D digital objects under rigid motions. J. Math. Imag. Vis. 61, 204–223 (2019). https://doi.org/10.1007/s10851-018-0842-9. https://hal.univ-reims.fr/hal-01695370

  28. Pavlidis, T.: Algorithms for Graphics and Image Processing. Springer-Verlag, Berlin-Heidelberg (1982)

    Book  Google Scholar 

  29. Serra, J.: Image Analysis and Mathematical Morphology. Academic Press Inc, USA (1983)

    Google Scholar 

  30. Sloboda, F., Zatko, B., Stoer, J.: On approximation of planar one-dimensional continua. Adv. Digital Comput. Geom. pp. 113–160 (1998)

  31. Stelldinger, P., Terzic, K.: Digitization of non-regular shapes in arbitrary dimensions. Image Vis. Comput. 26(10), 1338–1346 (2008). https://doi.org/10.1016/j.imavis.2007.07.013. http://www.sciencedirect.com/science/article/pii/S0262885607001370

  32. Tajine, M., Daurat, A.: Patterns for multigrid equidistributed functions: Application to general parabolas and length estimation. Theor. Comput. Sci. 412(36), 4824–4840 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to É. Le Quentrec.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le Quentrec, É., Mazo, L., Baudrier, É. et al. Monotonic Sampling of a Continuous Closed Curve with Respect to Its Gauss Digitization: Application to Length Estimation. J Math Imaging Vis 64, 869–891 (2022). https://doi.org/10.1007/s10851-022-01098-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-022-01098-8

Keywords

Navigation